This project has received funding from the European Union’s Horizon 2020 research
and innovation programme under grant agreement No 870811

i1i: SPICE:iji

Social cohesion, Participation, and Inclusion
through Cultural Engagement

D3.1 Prototype User and Community Model

Deliverable information
WP WP3
Document dissemination level PU Public
Deliverable type DEM Demonstrator, pilot, prototype
Lead beneficiary UH
Contributors UCM
Date 30/04/2021
Document status Final
Document version 1.0

Disclaimer: The communication reflects only the author’s view and the Research Executive Agency is not
responsible for any use that may be made of the information it contains

% 0%,
0 E'SP|CE'|E§|' D3.1 Prototype User and Community Model
SPICE GA 870811 V1.0, 30/04/2021

INTENTIONALLY BLANK PAGE

il SPICEiiji

SPICE GA 870811

Project information

Project start date: 1°* of May 2020

Project Duration: 36 months

D3.1 Prototype User and Community Model

Project website: https://spice-h2020.eu

Project contacts
Project Coordinator

Silvio Peroni

ALMA MATER STUDIORUM -
UNIVERSITA DI BOLOGNA

Department of Classical
Philology and Italian Studies —
FICLIT

Project Scientific coordinator
Aldo Gangemi

Institute for Cognitive
Sciences and Technologies of
the Italian National Research
Council

E-mail: aldo.gangemi@cnr.it

V1.0, 30/04/2021

Project Manager
Adriana Dascultu

ALMA MATER STUDIORUM -
UNIVERSITA DI BOLOGNA

Executive Support Services

E-mail:
adriana.dascultu@unibo.it

E-mail: silvio.peroni@unibo.it

SPICE consortium

No. | Short name Institution name Country
1 UNIBO ALMA MATER STUDIORUM - UNIVERSITA DI BOLOGNA Italy
2 AALTO AALTO KORKEAKOULUSAATIO SR Finland
3 DMH DESIGNMUSEON SAATIO - STIFTELSEN FOR DESIGNMUSEET SR Finland
4 AAU AALBORG UNIVERSITET Denmark
5 ou THE OPEN UNIVERSITY United

Kingdom

6 IMMA IRISH MUSEUM OF MODERN ART COMPANY Ireland
7 GVAM GVAM GUIAS INTERACTIVAS SL Spain
8 PG PADAONE GAMES SL Spain
9 UcM™m UNIVERSIDAD COMPLUTENSE DE MADRID Spain

10 UNITO UNIVERSITA DEGLI STUDI DI TORINO Italy

11 FTM FONDAZIONE TORINO MUSEI Italy

12 CELI CELI SRL Italy

13 UH UNIVERSITY OF HAIFA Israel

14 CNR CONSIGLIO NAZIONALE DELLE RICERCHE Italy

1WSPICEqags D3.1 Prototype User and Community Model
SPICE GA 870811 V1.0, 30/04/2021

Executive summary

D 3.1 provides a report on the development and testing of a (interim) user and community prototype
modelling in SPICE. To date, after studying the initial user modelling requirements of the different case
studies, initial user model and community model data structures were defined and implemented, as well as
APIs for accessing the data. A mechanism for explicitly (manually) setting and defining user modelling data
(user characteristics) was developed and demonstrated to case studies users. An initial mechanism for
community modelling was implemented and experimented in simulation. The main challenge we faced in
this stage was lack of knowledge and uncertainty about specific requirements of case studies and the
unstable situations in the museum case studies due to the COVID-19 issues that could eventually lead to
some readjustments of the original case studies. This led us to develop flexible mechanisms that may
accommodate diverse requirements. The details of the technology are described in this deliverable. In the
next stage the specific internal reasoning mechanisms of the user and community modelling will be further
developed and adapted according to emerging requirements of the case studies.

ili SPICEiiji

SPICE GA 870811

Document History

D3.1 Prototype User and Community Model

V1.0, 30/04/2021

Version | Release date Summary of changes Author(s) -Institution

V0.1 02/04/2021 First draft released, WP3 review Belen Diaz Agudo
(UCM), Tsvi Kuflik and
Alan Wecker (UH)

V0.2 21/04/2021 Internal Review Antonio Lieto(UT)
Enrico Daga (OU)

V0.3 23/04/2021 Version released to all partners for final Alan Wecker (UH)

integrations Internal review
V0.4 26/04/2021 Version for UNIBO Alan Wecker (UH)
V1.0 30/04/2021 Final version submitted to REA UNIBO

WiSPICEqs D3.1 Prototype User and Community Model
SPICE GA 870811 V1.0, 30/04/2021

Table of Contents

(o) =Totd g o] g 4 -1 1o o [PPSR 3
o 0 =Tt o0 g =X 3
SPICE CONSOMTIUM ..ceiiiiiiiiiiiiiie ettt ettt ettt e et e s et e e st et e s same e e e s sbee e e seesameeeessreeeesanreeeesans 3

EXECUTIVE SUMIMIATY iiiiieeeieieieeeeeeee e s s s s s s s ssesese e e e e e e s e e e s e s s s s s s s s s s s s s aaaasseaaabsasts sesesesesnsnsnsnsnsnsnsnsnsnnss 4

[DToTol 0] o g T=T o) o 1K) o] Y AT T T TP 5

N 101 oo [T Tt i o T o F TSSO PRRPPPTOPRRPPO 8

B U LT oV oo = PO PSPPTOPRPI 8
2.1 Motivation and JUSTIFICATIONeeiiiiie et e e e e e et e e e e e e bree e e araeas 8
2.2 GENEIAl SEFUCTUIE ..ttt sttt ettt e bt e b e s b e e sbeesa bt e be e beenneenbeens 8
2.3 ACCESSING thE USEI IMOUE] ...ttt ee st e e e e e e ttbr e e e e e e e e brbaeaeaeesaeeeesnnnsens 11

2.3.1 EXAMPIE OF USE ceiiiiiiiiiiiee ettt ettt e e e et e e e e e e et be e e e e e e e e anbtaaeeaeeesann sennnsranaeens 12

K S @1 0 Yo 01T 011 8 Y201Y/ Lo o 1= PSPPI 13
3.1 Motivation and JUSTIfICAtIONeeiiiiiiie e e e e 13
3.2 TYPES OF COMMUNITIES .eeeeiiiiiiiiiieeee ettt e e e e e sb b e e e e e e e eestabaeaeeeeessentssaeaeaeeseaeeesannasens 15
3.3 Community Model representationeiiiciiiiiiiiiiie et e e s e e s sa e 15
3.4 ComMMUNILY MOAEI APL......eeieieeee ettt e e e e e st re e e e e e e e e e bt aaeeeaesessastaeaeeeeesssstsessraneeeeaanaans 16

4 Interaction Within Work Package 3ccoo ittt e e e e et e e e e e e et s nnnaeeeee s 19

5 Interaction With 0ther WOrk PACKAgEcccuvviiiiiuiiiie ettt st e e sbre e e e s eata e e e enes 21

6 ConCluSIONS aNd FULUIE WOTK.....couiiiiiiiiii ettt et ettt sttt e e st e e sabeesnaeesans 23

7 Instructions (locations Of Material)ooccuiiiiiiiiiiee ettt e e etrere e e eeabaeeeeaes 24

8 REFEIENCES -ttt h e s h e s he e sttt ettt e bt e be e e he e e ae e eateeaeeentean 24
8.1 USEE IMOEI ...ttt ettt b e bt s bt e sbe e sheesatesate s beenbeesbeesaeesane e 24
8.2 (0o T 001 0 [T a1V 1 [o e 1T PRSP 25

S B o To YT o o | O UPRPPRNt 26
9.1 USer Model File StrUCTUIE......ciiieiieiiie ettt et s e b e bt e s e s sareesneeesanes 26
9.2 SPICE-USErMOdel-API RESTceiiiiiiiiite ettt ettt sttt st s e s esne e e snmeeesanee s 27

9.2.1 (00T} =0 00eY oY o] | 1= 27
9.2.2 e o1 nY @o] o d o) 11T PSP 31
9.2.3 USEICONTIOIIEE ettt ettt e s e e s e s bt e s bt e e sabeesabe e e sneeesareean 35
9.2.4 o T =] 3T PSPPSRSO PPRTOTRRPR 38
A N R 0o Yo 7 ={U = o [S 38

S B N A o {o o Y1 o VPN 38

S B T T U LY TP PP PSRRI 39

9.3 Yol =110 1 o Lo O T U PPV TOTSPI 39
9.4 React example of Wrapped REST CallS ...c.uuiiiiiiieee ettt 41

0 0t R 00T ¥ - Y=Y VT SRS 41

0 E‘bplcEil,_:_li D3.1 Prototype User and Community Model
SPICE GA 870811 V1.0, 30/04/2021

LS TR 0 A U LY Y =T o Vol 42
LS 2R N T o o =Y o VA =T VLol 42

WISPICEg D3.1 Prototype User and Community Model
SPICE GA 870811 V1.0, 30/04/2021

1 Introduction

WP3 Delivery 3.1 focusses on providing the technological infrastructure that enables reasoning about
individuals, their characteristics and preferences, the explicit communities they identify themselves with and
the implicit communities that evolve from analysing content contributed by these individuals. WP3, itself, is
composed of 4 closely related components: (1) individual and community models, which are the data
structures that contain information about individuals and communities (included in D3.1); (2) user and
community modelling components which are the reasoning mechanisms that monitor the user continuously,
reason about their behaviour and infer their preferences and community relatedness and update the models
accordingly (included in D3.1); (3) textual content analysis (D3.2) that provides input data for the user and
community modelling components to reason about; and (4) a recommender system (D3.4) that uses the user
models and scripts (guidelines/instructions for activities, generated by WP6) for guiding the process of
content recommendation to users.

D3.1 focusses on the individual and community user models and user modelling components. D3.1.1
documents the prototypes developed so far (first year deliverable of interim models). The document is
organized as follows:

It starts with an abstract description of the user model and the user modeller and its services, and then
describes the community model and community modeller and its services. Following is a description of the
internal and external links of WP3. Finally, there are conclusions reached so far. An appendix includes detailed
APls, usage examples and code of the different services.

2 User Model

2.1 Motivation and justification

In the SPICE project, user models represent the individuals that are interacting with the system. They are
key elements (together with the community models) used to guide the process of content recommendations
to individuals, taking into consideration individual and community interests, as well as script guidelines
(WPe6), to search and identify relevant users’ contributions, to provide alternative interpretations of objects,
to promote the social contagion among users and to emphasize the similarities and differences within and
across communities.

In this document we review the initial studies carried out to identify what user characteristics are relevant
(and needed to be represented) for the project. The information gathered through a series of project
meetings guided the development of the user model (a data structure containing users’ information) as well
as a communication protocol to access the data and a user modelling component to maintain it. The
procedure was as follows: first the case studies submitted scenarios, these were examined for user and
community characteristics which were categorized within known generic user model categories. The results
of these items were then discussed in meetings with each of the case studies.

With respect to the user model, deliverable D3.1.1 describes the interim model for SPICE. It is the result of
ongoing interactions with case studies leaders and other work package leaders.

2.2 General Structure

The deliverable consists of prototype code of REST APIs?, built using the SPRING boot framework? and this
document which describes the role which the user model plays in the overall project. In terms of deployment
in the project the intention is that each case study would instantiate its own version of the REST server. In
addition, a REACT frontend?® was developed which gives an example of how to use the REST services.

! https://en.wikipedia.org/wiki/Representational_stat er
2 https://spring.io/projects/spring-boot

3 https://reactjs.org/

0 LENPN D3.1 Prototype User and Community Model
SPICE GA 870811 V1.0, 30/04/2021

The User Model (UM) component provides three types of major services (controllers). The first concerns
configuring the user model. The second concerns the creation, retrieval, update, deletion (CRUD) of users
within the model. The third concerns the properties of an individual user and provides CRUD services for
each property. Each case study can configure the user model to use the properties it feels necessary for its
scenario. The values of the user model can be grouped to form communities implicitly in the community
model.

There are a number of basic concepts:

User — This is an individual who is modelled based on properties that are organized into different categories
(Identity, Demographics, Traits, Beliefs/Values, Interests, Skills, Communities, Current Contexts). A property
is configured by giving it a name, how it is constrained (what the allowable values are) and an aggregation
strategy (how we handle multiple calls to configure this property). Aggregation strategies can be: latest (last
one given), average (mean of all values given) or weighted average (mean with later entries given more
weight). In addition, when a property is added one can add information such as in what context the
information was added, what the source of the information was and whether it was explicitly given by the
user or implicitly derived based on some observed behaviour or other factors.

Here is further explanation of the categories and their possible use in the case study scenarios:

Identity — These are properties which identify the user (e.g., ID, email, password). Necessary if we want to
use the models over more than one session.

Demographics — Descriptive of the user which are fairly stable (e.g., age, gender, place of birth). These can
be used to help form explicit communities (see below)

Traits — Values which describe the user (e.g., personality, learning style). These can be used as shortcuts to
determining properties.

Beliefs/Values - Items the user holds (thinks) are important/to be of value. These can be useful in the
formation of implicit groups and/or common ground.

Interests - Items that the user likes. These could be evidenced by how long s/he views an artefact
connected to an interest. These can be used to improve user satisfaction or find common ground

Preferences - A series of items where the user prefers A to B (triangle inequality may or may not hold i.e. A
> B, B> C, implies A>C). After consultation with the case studies, we decided not to use this item.

Skills — Things that the user is good at or believes s/he is good at. Useful for determining what scripts to run

Communities - Either explicit communities obtained from the user info or implicitly derived from
community model. Used by recommender for choosing content

Current Contexts — Info about the user’s current environment (system, display capabilities, weather). May
be useful in determining which scripts to run.

The following Stability Examples Structure Derivation Scenario
table shows the +(derivation, date) | mode

categories and (derived

some of their from)

characteristics
(Structure is
what items make
up the values
and always
include the
source
(derivation) and
date added/last
updated). Item

| Eipi
SPICE GA 870811

D3.1 Prototype User and Community Model

V1.0, 30/04/2021

Identity High 1d#, password type, name, value, Explicit All
Demographics Medium A18Y, religion, type, name, Explicit DMH-Age,
high ethnicity parameter, Gender,
communities- Education,
explicit Languages,
Organizations
Traits Personality, type, name, degree, | Explicit
Learning Style, parameter
Preferred Curation
Type, Current Falk
Identity
Beliefs (Values) Medium type, name, degree, | Derived Hecht - Patriotic,
High parameter Religious
Interests Abstract concepts, | type, name, value Explicit All, implicit
on scale, {concept, | (questionnair | groups based on
activity } e) interests
Implicit
(User
Activity)
Media name2-value from User
. .
Skills Curation, DMH Activities
Writing(Language)
Reading(LLanguage
Communities Implicit All
Current Context Low Social, Spatial, Useful for scripts
Temporal,
Emotional,
Environment,
System

% 0%
0 I'SP|CE'III' D3.1 Prototype User and Community Model
SPICE GA 870811 V1.0, 30/04/2021

2.3 Accessing the User Model
The following is a list of the REST APIs based on the three major services described above.

The config controller is used to setup the configuration of the user model per each individual case study to
allow flexibility in the design. These are basic CRUD (Create, Retrieve, Update, Delete) functionality plus an
additional retrieve all function.

config-controller v

PUT /api/v2/configUpdate/{pname} Update a property configurations by property name 4

POST /api/v2/configCreate Create a property configuration for this usermodel !

GET /api/v2/config Get all configurations for this usermodel !

GET /api/v2/configGet/{pname} Geta property configurations by property name i

bSR3 /api/v2/configDelete/{pname} Delete a property configurations by property name 4

The user controller allows for additions of users to the model. Again basic CRUD functionality, with an
additional helper function which lets you get a certain property across all users

user-controller b
m /api/v2/users2Update/{userid} Update a user by userame o
“ /api/v2/users2Create Create a new user Id and pwd should be anonimized o
GET /api/v2/users2 Getall users, sorted by name !
GET /api/v2/users2Get/{userid} Get all the users properties by user name —

8313 /api/v2/users2Delete/{userid} Delete a users by user name !

The property controller allows you to manage (CRUD) each specific property for each individual user. The
additional functionality includes retriving all properties, all properties of a certain user, and all properties of
a certain name.

% 0%
0 I'SP|CE'II|' D3.1 Prototype User and Community Model
SPICE GA 870811 V1.0, 30/04/2021

property-controller v

PUT /api/v2/propertyUpdate/{userid} Update a specific property for a specific user !
POST /api/v2/propertyCreate/{userid} Add anew property for a user —
GET /api/v2/property Getall properties for all users !

GET /api/v2/propertyGetAllByUserid/{userid} Get all properties for a specific user 4

Get all properties with a certain property A

GET /api/v2/propertyGetAllByPname/{pname} e

GET /api/v2/propertyGet/{userid}/{pname} Get a specific property for a specific user «

Delete a specific property for a
specific user

‘ /831 /api/v2/propertyDelete/{userid}/{pname}

See Appendix A for the details of the layout of the file structure of the code. A more detailed description of
the APls, organized by the 3 major services, can be found in Appendix B.

2.3.1 Example of Use
Screenshots of the React frontend can be found in Appendix C.

Since React doesn’t know how to make REST calls directly we use the axios* library to wrap the calls. In
Appendix D we show the 3 services that are implemented to cover the User Model API (examples of the
service calls from React to the REST APIs) and used to implement the screens in React (presented in
Appendix C).

% https://github.com/axios/axios G

WISPICEg D3.1 Prototype User and Community Model
SPICE GA 870811 V1.0, 30/04/2021

3 Community Model

3.1 Motivation and justification

In the SPICE project, communities are key elements to search and browse contents of interests, to identify
similarities and differences across users and their contributions, to provide alternative interpretations of
objects, to promote the social contagion among users and to emphasize the similarities and differences
within and across communities.

In this document we review the initial investigations performed in SPICE to identify what types of
communities are required, how to detect communities and how to represent them. We do not describe here
the details of community detection and visualization, as these are planned for year 2.

Next, we review the most relevant aspects regarding the community model features, via question-answer
pairs.

e What are communities? They are groups of users with shared characteristics. Community detection
algorithms are based on similarity and can be configured to assure that each community is
meaningful. All the citizens in the same community share certain characteristics. The set of
characteristics depend on the data set, as a community identifies a group of users that are heavily
connected among themselves, but sparsely connected to the rest. The set of characteristics to
consider can be explicitly established in the explicit communities, but they will be detected by the
clustering and community detection algorithms for the so-called implicit communities.

e What features or characteristics are considered to detect a community? Features from the user
model, like similar personal profile features (demographics, age, sex) as well as features related to
user opinions on items of the content model including the information from the artworks. A
community model uses characteristics from the user model (T3.1), interactions with artworks
(interpretations) (T3.2) and the content model from ontologies and linked data (WP6 and WP4).

e What are communities for? They support the exploration of interpretations and museum objects
and help the recommender to find contents of interest. The visualization and explanation of
communities allow the exploration, reflective reasoning and social cohesion of the users. Besides,
communities of users that have previously used the system avoid the cold start problem as, due to
intra-community similarity, a new user can be treated like other users from the same community.

e Whatis a community model? It represents the set of all the communities inferred by the community
detection algorithms, their descriptions and relations. The community model can be queried using
the APl described below.

https://app.swaggerhub.com/apis-docs/gjimenezUCM/SPICE-CommunityModelAPI/1.0.0

It includes endpoints with services for communities, users and contributions and explanations.

e May one user belong to many different communities? Yes, different communities are formed using
different sets of features, so depending on the set, the same user can be classified within different
criteria. Besides, the communities depend on the whole set of users and they may change over time.

e When does the system detect new communities? This should be configurable. In the current version
we (ideally) assume that the community model is always up-to-date. That is, each time a new user
and/or a new contribution is included in the system, the community model has resources to
recompute the whole community set.

e What are the community detection algorithms used? We are exploring the behaviour of different
state of the art clustering algorithms based on similarity (k-means) and based on graph analysis
(Louvain method, modularity, k-cliques, Markov Clustering). Community detection algorithms are
configurable for each case study. More specifically, each use case could have a different
configuration of the similarity metrics from a set of predefined options, or deciding, for example,
about using (or not) overlapping communities.

0% onpm 0%,
Wi SPICEig D3.1 Prototype User and Community Model
SPICE GA 870811 V1.0, 30/04/2021

e Where is the community model stored? It is stored in the Linked data hub infrastructure developed
in WP4 which connects cultural objects, collections and citizen contributions.

WiSPICEqs D3.1 Prototype User and Community Model
SPICE GA 870811 V1.0, 30/04/2021

3.2 Types of communities
The set of communities is dynamic and vary over time. We have already emphasized that users can belong
to different communities representing different perspectives (similarity metrics) of the same user.

Communities can be explicitly stated (according to the information provided by the user model) or implicitly
appear, i.e., computed by the community detection algorithms using similarity metrics. Examples of explicit
communities are the personas defined in some of the project use cases (in WP7) that represent user
archetypes summarizing common behaviours (like teachers in the children school visits). Other examples of
explicitly stated communities could be a children group from a certain school, or visitors from an association.

Communities can also be classified as persistent, which are those that are stable in time and can be defined
as part of the user model; or virtual communities, which have a temporary and dynamic character and arise
with new users, new opinions, stories and/or reflections. Virtual communities are detected using the
community detection algorithms and can become persistent if required.

3.3 Community model representation

Besides state-of-the-art clustering algorithms, we are also studying the use of Graph analysis algorithms to
detect communities. In the later, the community model can be represented as a similarity graph (network)
where nodes represent users and links represent similarity connections between them. A community
identifies a group of nodes that are heavily connected among themselves, but sparsely connected to the
rest of the graph. The next figure shows an example, where communities are visualized through colors.
Visually, a thick line represents more similarity between the nodes.

More generally, the community model is multi-layer. Every layer uses the same set of nodes (users) and each
layer represents the relationship among users using a different similarity metric. On each layer, different
communities can be inferred using a similarity metric and we can find relationships between communities in
different layers according to the users who belong to them. Each similarity metric could combine features
(and weights for them) from the user model (T3.1), the interactions with artworks (interpretations) (73.2)
and content model (ontologies from WP4 and WP6).

[
159

2’
— 62
a6 /Al
| \
| o
132 b 1)
| # ~ Ar
L f 171
247 a3 50 %
I &
175
= L.
L T L L,
87 90 | 26
| 98 '
Y 103 2
86 ° "
& s 153

s
243
L
147
140 v &
N

149

1WSPICEqags D3.1 Prototype User and Community Model
SPICE GA 870811 V1.0, 30/04/2021

We will explore community detection algorithms based on clustering (K-means, hierarchical clustering,
Markov Clustering) [Xu2015] and on graph analysis (Louvain method, modularity, k-cliques) [Fortunato2010,
Yang2016]. What is relevant for this task is that community detection algorithms will heavily rely on the
definition of the similarity metrics. For example, we may be interested in communities of users that share
similar personal profile features (demographics, age, sex) from the user model and could also combine these
by identifying similar interpretations on similar contents. The use of different similarity metrics will change
the set of communities in the community model and this is why we need to include configuration capabilities
using a catalog of semantic similarity metrics.

Another interesting aspect to explore in the next future is the capability of explanation of the community
model. That means that each community should be explained to understand, for example, why a certain user
belongs to a certain community, what are the commonalities shared by the users of this community and what
are the differences within other nearby communities. A community can be explained through the common
shared characteristics, that are based on the similarity metric used to detect it. A symbolic description can
be also built using graph-based analysis techniques (like Formal Concept Analysis) [Jorro et al 2020].

3.4 Community model API
The input of the community model are user contributions, as the interactions between a user and an
artwork, according to the concepts evoked by the artwork (e.g., emotions, values).

contribution ~ {

uzer® string{suri)

url to the user model information stored on linked datahub
artwork® string{3uri)

url to the artwork content information stored on linked datahub

extended-contribution string(surl)
example: heeps://...

Url to complete information stored about the contribution (such as timestamp, context, textual contribution, sultimedia...)

concepts v

A list of the concepts extracted from the user contribution and employed by the community model for the community detection algorithms

string{Suri)

exomple: List [“https://w3id.org/spice/Son/PlutchikEmotion/Amazement” |

uri to a formal concept in SPICE ontologies

The output of the Community Model (CM) is two-fold:

On one hand, it provides information about the communities inferred by the CM. This information includes
a set with the specific contributions that intervened in the definition of that community. On the other hand,
CM computes similarity values among the different communities.

% 0%
0 I'SP|CE'II|' D3.1 Prototype User and Community Model
SPICE GA 870811 V1.0, 30/04/2021

community v {
id* id string(Suri)
exomple: dzs\nfue-e:sd-abs;-sugs-d:m:ms_fr:lssl

Unique id

name* string
exomple: elderly

Community name

explanation string
example: People whose oge is obove 85

comsunity description (maybe espty). It can be computed by the explanation module

community- type* string
exomple: explicit

Type of community. Virtual comsunities are computed by the community model. Explicit communities are provided by the user model

Enua:

> Array [2]
size* number
example: 5

Number of users who belong to the community

contributicns

%[s

similarityScore v [

Schema for results that compute similarity values

similarityScore v {
targetCommunityId id string($uri)
example: d298flee-6c54-4bol-90e6-d781748f0851

Unique id

othercommunityId id string{suri)
example: d298flee-6c54-4b01-90e6-d701748F8851

Unique id
value number

similarity value between the communities in the similarity score object
similarity-function string

similarity function employed to compute this similarity score

H

The community model APl concerns:

e Two entry points regarding USERS:
0 One for querying about the communities that a user belongs to (GET Method)
0 One for injecting user contributions in the CM (POST Method)

0 E"fZEP|CE‘I,_'_ ¥ D3.1 Prototype User and Community Model
SPICE GA 870811 V1.0, 30/04/2021

USers Operations related to users in communities

GET /users/{userId}/communities Communities thata user belongs

fusers/{userId}/contribution Add user contribution

e Three entry points to query information about communities:
O The communities within the CM (/communities)
0 The information about a concrete community (/communities/{communityid})
0 The users that belong to a community (/communities/{communityid}/users)

Communities Operations related to information aboout communities
GET /communities Communities in the model
GET /communities/{communityId} Information abouta community

GET /communities/{communityId}/users Userswho belong toacommunity

e Two entry points to provide services about similarity between communities:
0 Aservice to provide the k-most similar communities to a given one
(/communities/{communityId}/similarity).
0 Aservice to compute the similarity between two given communities
(/communities/{communityId}/similarity/{otherCommunityId}).

S||"|"'q||a|‘§tyr Operations about computing similarity among communities
Jcommunities/{communityId}/similarity K-moslsimilar communities

/communities/{communityXd}/similarity/{otherCommunityId} Similarity between two communities

The CM API has been tested using a preliminary prototype of a visualization tool using an example dataset of
the Prado Museum, based on Wikiart Emotions dataset [Saif2018] and enhanced with synthetic data.
Communities in the right can be interactively explored. In the example, two artworks are linked if they evoke
the same emotion (according to Plutchik’s wheel of emotions) for the users of the selected community. For
each community we visualize the artworks that are representative of this community in the right-side graph.

o%e 0%
|i-_;,l-SP|CE*l|l- D3.1 Prototype User and Community Model
SPICE GA 870811 V1.0, 30/04/2021

Communities

Markov Clustering v anger » & Show only communities
o
®

i_wm.wrl

The Straw Manikin -
mmmmul

The Defensa of Cadiz against the English

This prototype also contains an interactive explanation (based on FCA lattices) for a given community:

Explanation

The objects:
02

have the common properties:
afticipation,disgust, fear,surprise,trust

4 Interaction within Work Package 3

Within T3.1, bi-weekly meetings were held to co-ordinate between the user model and the community
model. In addition, weekly meetings were held to monitor progress of T3.1.

With T3.2, meetings held to coordinate that the output of T3.2 can be used by the User model (and from
there by the community model).

With T3.3, there was a meeting but it is less critical as these tasks are not linked. By definition, there was
coordination between the community model and T3.3 as they are the same development team.

T3.4 began to examine how it could use the user and community models to provide recommendations
based on this delivery.

o%e 0%
lll'SPICE'IlI' D3.1 Prototype User and Community Model
SPICE GA 870811 V1.0, 30/04/2021

Recommender System

=gl - . ks oy
- User Community Uset w oo
\ =0 | WL | COntent) [Content
- Model Model A Y ek

N ad 1T ol =8
WESPICEqg D3.1 Prototype User and Community Model
SPICE GA 870811 V1.0, 30/04/2021

5 Interaction with other Work Package
Here is diagram of the interactions of WP3 with the other packages:

B L Controller WP 3 (UM WPs (LD WP
hub) {Ontologies)

Visitor I I
| |

| |

start visit : !

L s@artvisit 1} 1, requestfor initialize visit
\

T T If wisitor
1.1.1: initialize visit >
exists

1.1.1.1: upload user model

1.1.1.2.1: handle initial content query

1.11.2: send user event

1.1.1.2.1.1: generate initial content

.11.2.1.2: initial content

R

1.1.1.2.2, display initial conten

1.1.1.2 3, displayed content

|
[toop) i |
|

2. user activity

2.1: request for handle event
2.1.1: handle event

2.1.1.1: request for store event

2.11.1.1: store event K

- g

; 2.11.2: denive information from event

inew user conten i i
= L 2.1.1 3 derive information from user content

2.1.1.%: reguest for store information

| 3 store information
h -

—11
I
i

2.11.5: update user model
:‘ 1

2.1.1.4: notify community model

2.11.7: send user event

TT
2.1.1.7.1: handle content recommendation query

(recommendation is needed) I
|

2.11.7.1.1: make recommendation

2.1.1.7.1.2: request for send related ontology information

alt

2.1.1.7.1.2.1. send related ontology information
I]
I [
2.1.1.7.1.2.2: ontology information

i}
[

i
.7.1.2.3. ontology information

|

4: content recommendation

4.1: do recommendation

.1.1: displayed recomme ndation

-

% 0%
0 I'SP|CE'III' D3.1 Prototype User and Community Model
SPICE GA 870811 V1.0, 30/04/2021

With WP2 we coordinated those methods designed will provide info to the User Model and use the
recommendations.

With WP4 we coordinated storage of user and community models in the Link Data Hub.

With WP5 a meeting was held to see how user and community models can be reflected in the user
interface.

With WP6 a series of meetings held to coordinate that WP3 and WP6 use the same vocabularies and that
the ontology reflects the structure of the user and community models.

With WP7 meetings were held with each of the case studies (IMMA, GAM, Madrid, Hecht, DMH) to
understand their needs and use of the user and community models and implications for the planned
recommender.

Case User Characteristics Community Characteristics
Study

Demographics — Children, Adults Family, Based on Artwork Interpretation

Older

Level of Physical Challenges, similar Level of Physical Challenges, similar
responses responses

Attitudes toward climate change, Age, Attitudes toward climate change, Age, Rural
Rural vs Urban vs Urban

Age, Gender, A18Y, Occupation, Socio- City vs Non City Dwellers (Need to see
Economic Status, Location, Interests, scenario of asylum seekers)

Connection to Helsinki, Education Language
m Religion, Nationality, Religiosity, Values Religion, Nationality, Religiosity, Values

.

]} CEgr D3.1 Prototype User and Community Model
SPICE GA 870811 V1.0, 30/04/2021

6 Conclusions and future work

In general, for task 3.1 the goals set for the first year were achieved. The heterogeneity of the case studies
(which is a good thing) posed a challenge in terms of user modelling, posed a challenge on the development
of the user and the community models and required us to suggest creative solutions to the uncertainty and
lack of information about the intended use of the models in the case studies, which will be useful in ensuring
that the models will be flexible and applicable to a wide range of scenarios. In both the user model and the
community model components, continuous interaction with the case studies, flexible solutions to
accommodate for changing requirements and simulations were adopted in order to allow us to achieve the
first-year goals.

Regarding the User Model, the major challenge encountered (which was expected) was uncertainty in what
user characteristics may be needed for modelling users, what may be explicitly provided and what will have
to be inferred. The solution was a definition of a flexible user model that may be able to accommodate any
user characteristic in the form of attribute-value pair, allowing the system administrator to define the
relevant user model for a specific system using a dedicated configuration tool. It also allows a combination
of explicit definition of user characteristics, together with an inference mechanism that is based on concepts
extracted from the user generated content and the sentiment towards them, extracted by T3.2.

Future tasks include:

e Immediate- Getting the REST code to work with the JSON-LD Hub, adding aggregation methods

e Develop the reasoning mechanism for updating user preferences

e Longterm — Helping the case studies utilize the user/community model

e Integrating the user model and user modelling component with the recommender system

e Integrate the user modelling mechanism into the HECHT museum case study (WP 7.3) as a prototype
example for the other case studies

Regarding the Community Model, we have accomplished the goals associated with community
representation and modelling including the study of services to communicate with other modules of the
project. Until now, we have worked with synthetic user data and tested and reviewed some of the state of
art clustering and community detection algorithms. Besides, we have started the tasks related with the
development of tools for exploring aggregations of interpretations, visualization and interaction. We tested
different clustering techniques for identifying commonalities and variabilities among the communities using
artificial users and content. We explored with different types of communities: explicit, implicit, persistent,
virtual, temporal. Some of the use cases have already reported the explicit communities they envision in
their museums.

In cooperation with WP6 and WP4 we have analysed the relationships among clusters in the community
model and the content concept ontologies. This initial exploration has resulted in two lines of cooperation:
the first one is the use of ontologies as knowledge to compute similarity metrics that are needed in the
community detection algorithms. The second line is the relation of communities with the defined concepts
from the conceptual ontologies in the project. Explanation of communities will allow to identify what are the
most representative terms that will be used to link the communities with the concept ontology. This will
enable users to browse the ontologies and the repository of content through the community model. This
cooperation needs to be extended in the future to define semantic similarity based on ontological content,
and allowing some of the implicit communities identified through the algorithms to be included as concepts
in the ontologies (only for stable communities).

Various clustering techniques, like K--means or formal concept analysis have already been experimented
although we need to explore further to identify the most effective techniques for the task. The homogeneous
groups of similar interpretations will be used to identify and represent the "interpretation archetypes" that
will support the design of recommendation models tailored for the different user communities developed as
part of task 3.1.

(N 1T al =+
WESPICEqg D3.1 Prototype User and Community Model
SPICE GA 870811 V1.0, 30/04/2021

We now summarize future work related with the Community Model:

e Extend the literature study regarding clustering techniques and community modelling. We will
include all the literature study in the prototype of clustering techniques (Deliverable 3.5, month 24).

e Experiment with different clustering techniques for identifying commonalities and variabilities
among the communities. Extended examples with real data will be developed.

e Extend the initial literature study of similarity and dissimilarity for intra-community and inter-
community. Examples and report are expected to be included in Deliverable 3.5.

e Analyze further relationships among detected communities in the CM and high-level concepts in the
concept ontology.

e Develop an exploration tool to browse the repository of content and the communities through the
vocabulary of the ontology, generate visual explanations from the relation intra communities and
inter communities and generate higher-level ontology concepts from semantic annotation of
clusters.

7 Instructions (locations of material)
This document can be found at ZENODO (DOI according to version) 10.5281/zenodo0.4708753

The source code Version 1,1 for the User Model can be found at ZENODO 10.5281/zenodo.4724887. Latest
version is 10.5281/zenodo.4724886.

A draft version of the user model REST API can also be found at:
https://app.swaggerhub.com/apis/ajwecker/SPICE-UserModel-AP1/vO#/user-controller

A draft version of the community model REST API is available at: https://app.swaggerhub.com/apis-
docs/gjimenezUCM/SPICE-CommunityModelAPI/v1

8 References

8.1 User Model

Alexandridis, G., Chrysanthi, A., Tsekouras, G. E., & Caridakis, G. (2019). Personalized and content adaptive
cultural heritage path recommendation: an application to the Gournia and Catalhoylik archaeological
sites. User Modeling and User-Adapted Interaction, 29(1), 201-238. https://doi.org/10.1007/s11257-
019-09227-6

Antoniou, A., Katifori, A., Roussou, M., Vayanou, M., Karvounis, M., Kyriakidi, M., & Pujol-Tost, L. (2016).
Capturing the Visitor Profile for a Personalized Mobile Museum Experience: an Indirect Approach.
http://chess.madgik.di.uoa.gr:10005/cvs-

Cena, F,, Likavec, S., & Rapp, A. (2019). Real World User Model: Evolution of User Modeling Triggered by
Advances in Wearable and Ubiquitous Computing. Information Systems Frontiers, 21(5), 1085-1110.
https://doi.org/10.1007/s10796-017-9818-3

Leung, R., & Law, R. (2010). A review of personality research in the tourism and hospitality context. Journal
of Travel and Tourism Marketing, 27(5), 439-459. https://doi.org/10.1080/10548408.2010.499058

Musto, C., Semeraro, G., Lovascio, C., De Gemmis, M., & Lops, P. (2018). A framework for holistic user
modeling merging heterogeneous digital footprints. UMAP 2018 - Adjunct Publication of the 26th
Conference on User Modeling, Adaptation and Personalization, 97—-101.
https://doi.org/10.1145/3213586.3226218

Roussou, M., & Katifori, A. (2018). Flow, staging, wayfinding, personalization: Evaluating user experience
with mobile museum narratives. Multimodal Technologies and Interaction, 2(2).
https://doi.org/10.3390/mti2020032

Wi SPICEig D3.1 Prototype User and Community Model
SPICE GA 870811 V1.0, 30/04/2021

Spallazzo, D. (2012). Sociality and Meaning Making in Cultural Heritage Field. Designing the Mobile
Experience.

8.2 Community Model
Fortunato, S. Community detection in graphs, Physics Reports, vol 486, Issues 3-5, (2010) 75-174, ISSN
0370-1573, https://doi.org/10.1016/j.physrep.2009.11.002.

Jose Luis Jorro, Marta Caro-Martinez, Belén Diaz-Agudo, Juan A. Recio-Garcia: A User-Centric Evaluation to
Generate Case-Based Explanations Using Formal Concept Analysis. ICCBR 2020: 195-210 978-3-030-58341-5
https://doi.org/10.1007/978-3-030-58342-2 13

Saif M. Mohammad and Svetlana Kiritchenko. WikiArt Emotions: An Annotated Dataset of Emotions Evoked
by Art. In Proceedings of the 11th Edition of the Language Resources and Evaluation Conference (LREC-
2018). (2018), Miyazaki, Japan.

Yang, Z., Algesheimer, R. & Tessone, C. A Comparative Analysis of Community Detection Algorithms on
Artificial Networks. Sci Rep 6, 30750 (2016). https://doi.org/10.1038/srep30750

Xu, D., Tian, Y. A Comprehensive Survey of Clustering Algorithms. Ann. Data. Sci. 2, 165-193 (2015).
https://doi.org/10.1007/s40745-015-0040-1

Frank Y. Guo, Sanjay Shamdasani, Bruce Randall, Creating Effective Personas for Product Design: Insights
from a Case Study. International Conference on Internationalization, Design and Global Development. IDGD
2011: Internationalization, Design and Global Development pp 37-46| Lecture Notes in Computer Science
book series (LNCS, volume 6775)

ili'SPICEiifi
SPICE GA 870811

9 Appendix

9.1 User Model File Structure
The structure of the file system is:

Jusermodel

J/usermodel/src/main/java
il.ac.haifa.is.spice
il.ac.haifa.is.spice.controller
il.ac.haifa.is.spice.exception
il.ac.haifa.is.spice.model
il.ac.haifa.is.spice.repository
il.ac.haifa.is.spice.security

J/usermodel/src/main/resources
J/usermodel/src/main/resources/application.properties

Jusermodel/src/test/java

Jusermodel/doc

J/usermodel/react-frontend (example frontend)
J/usermodel/react-frontend/build
/usermodel/react-frontend/node_modules
/usermodel/react-frontend/public
Jusermodel/react-frontend/src
J/usermodel/react-frontend/src/components
Jusermodel/react-frontend/src/services
/usermodel/react-frontend/src/App.css
/usermodel/react-frontend/src/App.js
/usermodel/react-frontend/src/App.test.js
Jusermodel/react-frontend/src/index.css
/usermodel/react-frontend/src/index.js
/usermodel/react-frontend/src/logo.svg
/usermodel/react-frontend/src/reportWebVitals.js
/usermodel/react-frontend/src/setupTests.js
/usermodel/react-frontend/debug.log
/usermodel/react-frontend/package-lock.json
/usermodel/react-frontend/package.json
J/usermodel/react-frontend/README.md
Jusermodel/src

J/usermodel/target

Jusermodel/HELP.md

J/usermodel/mvnw

Jusermodel/mvnw.cmd

J/usermodel/pom.xml

J/usermodel/usermodel-api-docs.json

D3.1 Prototype User and Community Model
V1.0, 30/04/2021

% 0%
0 B'SP|CE'|@|' D3.1 Prototype User and Community Model
SPICE GA 870811 V1.0, 30/04/2021

9.2 SPICE-UserModel-API REST

A more detailed description of the APIs again organized by the 3 major services

9.2.1 ConfigController

POST /api/v2/configCreate

Create a property configuration for this usermodel (createConfiguration)

Consumes

This API call consumes the following media types via the Content-Type request header:
e application/json

Request body

body Configuration (required)

Body Parameter —

Return type

Configuration

Example data

Content-Type: application/json

{

""aggregationStrategy" : "Latest",
"pname’™ : "pname’,
"ptype” E "ptype"”,)
"constraint™ : "constraint’,
"id" - 0,
“category" : "ldentity"

3

Produces

This API call produces the following media types according to the Accept request header;
the media type will be conveyed by the Content-Type response header.
° */*
Responses
200

OK Configuration

DELETE /api/v2/configDelete/{pname}

Delete a specific property configuration by property name (deleteConfiguration)
Path parameters

pname (required)

Path Parameter —

Return type

map[String, Boolean]

Example data

Content-Type: application/json

"key" : true
¥

Produces
This API call produces the following media types according to the Accept request header;
the media type will be conveyed by the Content-Type response header.

° */*
Responses
200
OK

% 0%
0 I'SP|CE'II|' D3.1 Prototype User and Community Model
SPICE GA 870811 V1.0, 30/04/2021

% 0%
0 i'Sp|CE'|§|' D3.1 Prototype User and Community Model
SPICE GA 870811 V1.0, 30/04/2021

GET /api/v2/config

Get all configurations for this usermodel (getAllConfigurations)
Return type

array[Configuration]

Example data

([:o{ntent—Type: application/json

‘aggregationStrategy™ : "Latest"™,
"pname’ : "pname’,
“ptype” - "ptype”,)
"constraint™ : '‘constraint",
“id™ - 0,
“"category" : "ldentity"

A
"aggregationStrategy" : "lLatest",
"pname’™ : "pname’,
"ptype” - "ptype"”, i
‘constraint” : "constraint",
“id" - 0,
"category" : "ldentity"

31

Produces

This API call produces the following media types according to the Accept request header;
the media type will be conveyed by the Content-Type response header.
° */*
Responses
200
OK

GET /api/v2/configGet/{pname}

Get a property configurations by property name (getConfigurationByPname)
Path parameters

pname (required)

Path Parameter —

Return type

Configuration

Example data

Content-Type: application/json

{

‘aggregationStrategy™ : "Latest",
"pname™ : "pname’,
“ptype” - "ptype”, i
"constraint” : 'constraint",
"id" - 0,
“"category" : "ldentity"

}

Produces

This API call produces the following media types according to the Accept request header;
the media type will be conveyed by the Content-Type response header.
° */*
Responses
200

OK Configuration

% 0%
0 I'SP|CE'IS|' D3.1 Prototype User and Community Model
SPICE GA 870811 V1.0, 30/04/2021

PUT /api/v2/configUpdate/{pname}

Update a property configuration by property name (updateConfiguration)

Path parameters

pname (required)

Path Parameter —

Consumes

This API call consumes the following media types via the Content-Type request header:
e application/json

Request body

body Configuration (required)

Body Parameter —

Return type

Configuration

Example data

Content-Type: application/json

""aggregationStrategy" : "lLatest",
"pname’ : "pname’,
"ptype” E "ptype”,)
constraint™ : "constraint’,
"id" - 0,
“category" : "ldentity"

¥

Produces

This API call produces the following media types according to the Accept request header;
the media type will be conveyed by the Content-Type response header.
° */*
Responses
200

OK Configuration

% 0%
0 i'Sp|CE'|§|' D3.1 Prototype User and Community Model
SPICE GA 870811 V1.0, 30/04/2021

9.2.2 PropertyController

POST /api/v2/propertyCreate/{userid}

Add a new property for a user (createProperty)

Path parameters

userid (required)

Path Parameter —

Consumes

This API call consumes the following media types via the Content-Type request header:
e application/json

Request body

body Property (required)

Body Parameter —

Return type

Property

Example data

E{:ontent-Type: application/json

"pname’ : "pname’,
"context" : "context',
“pvalue' : 'pvalue’,
"id" : 6,
"'source' : ''source',
"userid" : "userid"

¥

Produces

This API call produces the following media types according to the Accept request header;
the media type will be conveyed by the Content-Type response header.
° * [
Responses
200

OK Property

DELETE /api/v2/propertyDelete/{userid}/{pname}
Delete a specific property for a specific user (deleteUserl)
Path parameters

userid (required)

Path Parameter —

pname (required)

Path Parameter —

Return type

map[String, Boolean]

Example data

Content-Type: application/json

{

"key" : true
¥

Produces
This API call produces the following media types according to the Accept request header;
the media type will be conveyed by the Content-Type response header.

° */*
Responses
200
OK

% 0%
0 i'Sp|CE'|§|' D3.1 Prototype User and Community Model
SPICE GA 870811 V1.0, 30/04/2021

GET /api/v2/propertyGetAlIByPname/{pname}

Get all properties with a certain property name (getAllPropertyByPname)
Path parameters

pname (required)

Path Parameter —

Return type

array[Property]

Example data

([Zo{ntent-Type: application/json

"pname’ : "pname’,
"context" : "context',
“pvalue' : 'pvalue’,
"id" : 6,
""source' : ''source",
"userid" : "userid"

3 {
"pname’™ : “pname’,
"context'™ : "‘context',
"pvalue™ : "pvalue",
"id" : 6,
"'source" : ''source",
"userid" : "userid"

31

Produces

This API call produces the following media types according to the Accept request header;
the media type will be conveyed by the Content-Type response header.

° *[*
Responses
200
OK

GET /api/v2/propertyGetAllByUserid/{userid}

Get all properties for a specific user (getAllPropertyByUserid)
Path parameters

userid (required)

Path Parameter —

Return type

array[Property]

Example data

Content-Type: application/json

L{

"pname’™ : “pname’,
"context'" : "‘context",
“"pvalue" : "pvalue",
"id" : 6,
"'source" : ''source",
"userid" : "userid"
. {
“"pname’ : "pname’,
"context' : '"context',
“pvalue™ : *pvalue’,
"id" : 6,
"*source' : "'source',
"userid" : "userid"
31
Produces

This API call produces the following media types according to the Accept request header;
the media type will be conveyed by the Content-Type response header.

% 0%
0 i'Sp|CE'|§|' D3.1 Prototype User and Community Model
SPICE GA 870811 V1.0, 30/04/2021

° */*
Responses
200
OK
GET /api/v2/property
Get all properties for all users (getAllPropertys)
Return type
array[Property]
Example data
([:o{ntent—Type: application/json

"pname’™ : "pname’,
"context' : '"context',
“pvalue™ : *pvalue’,
"id" : 6,
*source' : "'source',
"userid" : "userid"

¥ {
"pname’ : "pname’,
"context" : "context',
“pvalue™ : 'pvalue’,
"id" : 6,
"'source' : ''source',
"userid" : "userid"

31

Produces

This API call produces the following media types according to the Accept request header;
the media type will be conveyed by the Content-Type response header.

° */*
Responses
200
OK

GET /api/v2/propertyGet/{userid}/{pname}
Get a specific property for a specific user (getPropertyByUseridAndPropertyName)
Path parameters

userid (required)

Path Parameter —

pname (required)

Path Parameter —

Return type

Property

Example data

Content-Type: application/json

{

"pname’™ : "pname’,
"context'™ : "‘context",
"pvalue" : "pvalue",
“id" : 6,
"'source" : ''source",
"userid" : "userid"

3

Produces

This API call produces the following media types according to the Accept request header;
the media type will be conveyed by the Content-Type response header.
° */*

Responses

% 0%
0 i'Sp|CE'|§|' D3.1 Prototype User and Community Model
SPICE GA 870811 V1.0, 30/04/2021

200
OK Property

PUT /api/v2/propertyUpdate/{userid}

Update a specific property for a specific user (updateProperty)

Path parameters

userid (required)

Path Parameter —

Consumes

This API call consumes the following media types via the Content-Type request header:
e application/json

Request body

body Property (required)

Body Parameter —

Return type

Property

Example data

%ontent—Type: application/json

"pname’ : "pname’,
"context' : '"context',
“pvalue™ : *pvalue’,
"id" : 6,
*source' : "'source',
"userid" : "userid"

}

Produces

This API call produces the following media types according to the Accept request header;
the media type will be conveyed by the Content-Type response header.
° *[*
Responses
200

OK Property

% 0%
0 i'Sp|CE'|§|' D3.1 Prototype User and Community Model
SPICE GA 870811 V1.0, 30/04/2021

9.2.3 UserController

POST /api/v2/users2Create

Create a new user Id and pwd should be anonimized (createUser)

Consumes

This API call consumes the following media types via the Content-Type request header:
e application/json

Request body

body User (required)

Body Parameter —

Return type

User

Example data

%ontent—Type: application/json

"password” : *‘password’,

"id™ - 0,

"userid" : "userid",

"properties" : [{
"pname' : "‘pname',
"context' : "‘context',
“"pvalue™ : "pvalue",
"id" : 6,
""source' : ''source",
"userid" : "userid"”

- {
“"pname" : "pname’,
"context" : '‘context',
"pvalue™ : "pvalue",
"id" : 6,
"'source' : ''source",
"userid" : "userid"”

31

3
Produces

This API call produces the following media types according to the Accept request header;
the media type will be conveyed by the Content-Type response header.
° * [
Responses
200
OK User

DELETE /api/v2/users2Delete/{userid}
Delete a user by userid (deleteUser)
Path parameters

userid (required)

Path Parameter —

Return type

map[String, Boolean]

Example data

Content-Type: application/json

{

"key" : true
}

Produces

ili SPICEiiit

SPICE GA 870811

D3.1 Prototype User and Community Model

V1.0, 30/04/2021

This API call produces the following media types according to the Accept request header;

the media type will be conveyed by the Content-Type response header.

/
Responses
200
OK

GET /api/v2/users2
Get all users, sorted by name (getAllUsers)

Return type
array[User]

Example data

Content-Type: application/json
[{

"password"™ : "password",
"id" : 0,
"userid" : "userid",
“properties™ : [{
"pname’ : “pname’,
"context'" : "‘context",
"pvalue" : "pvalue",
"id" : 6,
"'source" : ''source",
"userid" : "userid"
¥ {
"pname’ : "pname’,
"context" : "context',
“pvalue™ : *pvalue’,
"id" : 6,
"'source' : "'source',
"userid" : "userid"
31
. {
"password” : "password",
"id" - 0,
"userid" : "userid",
"properties” : [{
"pname’ : "pname’,
"context' : '"context',
"pvalue™ : "pvalue",
"id" : 6,
"'source" : ''source",
"userid" : "userid"
¥ {
"pname' : "pname",
"context'" : "context',
“"pvalue : 'pvalue’,
"id" : 6,
""'source' : "'source',
"userid" : "userid"
31
31
Produces

This API call produces the following media types according to the Accept request header;

the media type will be conveyed by the Content-Type response header.

° *[*
Responses
200
OK

GET /api/v2/users2Get/{userid}
Get all the users properties by user name (getUserByUserid)

% 0%
0 I'SP|CE'ISI' D3.1 Prototype User and Community Model

SPICE GA 870811

Path parameters

userid (required)

Path Parameter —

Return type

User

Example data

({Zontent-Type: application/json

“password™ : "‘password’,

"id" - 0,

"userid" : "userid",

"properties” : [{
"pname’ : "pname’,
"context' : 'context',
“pvalue™ : *pvalue’,
"id" : 6,
*source' : "'source',
"userid" : "userid"

3 {
"pname’ : "pname’,
"context" : "context',
“pvalue™ : "pvalue’,
“id" : 6,
""'source' : ''source',
"userid" : "userid"

31

3
Produces

V1.0, 30/04/2021

This API call produces the following media types according to the Accept request header;

the media type will be conveyed by the Content-Type response header.
° *[*

Responses

200

OK User

PUT /api/v2/users2Update/{userid}

Update a user by username (updateUser)
Path parameters

userid (required)

Path Parameter —

Consumes

This API call consumes the following media types via the Content-Type request header:

e application/json
Request body
body User (required)
Body Parameter —
Return type
User
Example data
%ontent—Type: application/json

“password™ : "‘password’,

"id" - 0,

"userid" : "userid",

"properties” : [{
"pname’ : "pname’,
"context' : '‘context",
“pvalue™ : *pvalue™,

"id" I 6,

ili SPICEiiit

SPICE GA 870811

"'source" : ''source",
"userid" : "userid"
. {
"pname’ : "pname’,
"context'" : '"context',
“pvalue' : 'pvalue’,
"id" : 6,
""source' : ''source',
"userid" : "userid"
31
3
Produces

D3.1 Prototype User and Community Model
V1.0, 30/04/2021

This API call produces the following media types according to the Accept request header;
the media type will be conveyed by the Content-Type response header.

° *[*
Responses
200
OK User

9.2.4 Models

This is a list of the different objects (Configuration, Property, User) used by the API

9.2.4.1 Configuration
id (optional)

Long format: int64
category (optional)
String

Enum:

Identity
Demographics
Traits

Beliefs

Interests

Skills

Communities
CurrentContexts
pname (optional)
Strin

type (optional)

i

o |»
=
=
Lg

onstraint (optional)
trin
aggregationStrategy (optional)

:

9.2.4.2 Property
id (optional)

Long format: int64
userid (optional)

ili SPICEiiit

SPICE GA 870811

tring
name (optional)
trin
value (optional)
trin
ource (optional)
tring
context (optional)

String

wn

2]

wn v wmo

9.2.4.3 User

id (optional)

Long format: int64
userid (optional)
String

password (optional)

String

properties (optional)

array[Property

9.3 Screenshots

D3.1 Prototype User and Community Model

V1.0, 30/04/2021

Initial screen gives choice to either (1) configure a User Model or (2) work with the configured model

UH UserModel Demo

UserModeling

Configure Properties for Models Model Property Configurations

[SPICE @University of Haifa

List of different properties in the configurations (From choice 1 in First screen)

UH UserModel Demo

Proper

Add New Property Configuration

Property
Name

Age

Sewing

SPICE @University of Haifa

Category

DEMOGRAPHICS

SKILLS

Property
Type

Integer

String

Constraints

None

agté

Aggregation
Strategy

LATEST

LATEST

Configurations List

Date Added

2020-12-

17T00:42:25.000+00:00

2020-12-
17T00:44:49.000+00:00

Last Change Actions
2020-12- View Al
17T00:42:25.000+00:00

Delete
2020-12- View All
17T00:44:49.000+00:00

Delete

An example of all user properties with name of Age from previous screen View All

% _023.
0 i'Sp|CE'lg.}l' D3.1 Prototype User and Community Model
SPICE GA 870811 V1.0, 30/04/2021

B
Property (Age) List

Return to Main List

User Property Name Property Value Source Context Timestamp Actions
MDAWMDAW Age 53 explicit questionaire 2020-12-17T02:42:45.000+00:00
ABgMQj31 Age 54 explicit questionaire 2020-12-17T10:45:41.000+00:00

SPICE @University of Haifa

ili SPICEiji

SPICE GA 870811

D3.1 Prototype User and Community Model
V1.0, 30/04/2021

List of all users from first screen option 2

UH UserModel Demo

_
Add New User Return to Main Screen

User List

Name Anonimyzed User Password Date Added Last Change Actions

ABqMQj31 italyski 2020-12-10T08:49:40.000+00:00 2020-12-10T08:49:40.000+00:00

bUtBCYLTUI pw3 2020-12-13T22:09:17.000+00:00 2020-12-13T22:09:17.000+00:00

MDAWMDAWMD pw 2020-12-09T04:02:28.000+00:00 2020-12-10T02:21:28.000+00:00
SPICE @University of Haifa

View values for a particular user from previous screen

UH UserModel Demo

I

User (MDAWMDAWMD) Properties List

User Property Name Property Value Source Context Timestamp Actions

MDAWMDAW Age 53 explicit questionaire 2020-12-17T02:42:45.000+00:00
MDAWMDAwW Extrovert Medium explicit questionaire 2020-12-14T16:13:59.000+00:00
MDAWMDAw birthplace Tel Aviv explicit questionaire 2020-12-14T16:13:25.000+00:00

9.4 React example of wrapped REST calls

9.4.1.1 Config Service

import axios from 'axios';

const USER_API_BASE_URL = "http://localhost:8080/api/v2/config";
//

class ConfigService {

getConfigurations(){
return axios.get(USER_API_BASE_URL);
}
createPropertyConfiguration(config){
return axios.post(USER_API_BASE_URL+"Create", config);
}
getConfigByName (propertyName){
return axios.get(USER_API_BASE_URL + 'Get/' + propertyName);

1WSPICEqags D3.1 Prototype User and Community Model
SPICE GA 870811 V1.0, 30/04/2021

updateConfig(config, propertyName){
return axios.put(USER_API_BASE_URL + 'Update/' + propertyName, config);

}
deleteConfig(propertyName){
return axios.delete(USER_API_BASE_URL + 'Delete/' + propertyName);

}

export default new ConfigService()

9.4.1.2 User Service
import axios from 'axios';
const USER_API_BASE_URL = "http://localhost:8080/api/v2/users2";

//
class UserService {
getUsers(){
return axios.get(USER_API_BASE_URL);
}
createUser(user){
return axios.post(USER_API_BASE_URL+"Create", user);
}
getUserById2(userId){
return axios.get(USER_API_BASE_URL + 'Get/' + userld);
}
updateUser2(user, userId){
return axios.put(USER_API_BASE_URL + 'Update/' + userId, user);
}
deleteUser2(userId){
return axios.delete(USER_API_BASE_URL + 'Delete/' + userId);
}
getPropertyByUseridPropertyName(propertyName, userId){
return axios.get(USER_API_BASE_URL + '/' + userId+'/'+propertyName);
}
}

export default new UserService()

9.4.1.3 Property Service

import axios from 'axios';

const PROPERTY_API BASE _URL = "http://localhost:8080/api/v2/property";
class PropertyService {

getPropertysByUserid(userid){
return axios.get(PROPERTY_API_BASE_URL+'GetAllByUserid/'+userid);
}
getPropertysByName(pname){
return axios.get(PROPERTY_API_BASE_URL+'GetAllByPname/'+pname);
}
createProperty(property, userid){
return axios.post(PROPERTY_API_BASE_URL+'Create/'+userid, property);

Wi SPICEig D3.1 Prototype User and Community Model
SPICE GA 870811 V1.0, 30/04/2021

getPropertyById(propertyName, userid){

return axios.get(PROPERTY_API_BASE_URL+'Get/' + userid+'/'+propertyName);
}
updateProperty(property, userid){

return axios.put(PROPERTY_API_BASE_URL +'Update/' + userid, property);

deleteProperty(userid, propertyName){
return axios.delete(PROPERTY_API_BASE_URL+'Delete/' + userid+'/'+propertyName);

}

export default new PropertyService()

