

This project has received funding from the European Union’s Horizon 2020 research
and innovation programme under grant agreement No 870811

D3.3 Final User and Community Models

Deliverable information

WP WP3

Document dissemination level PU Public

Deliverable type DEM Demonstrator, pilot, prototype

Lead beneficiary UH

Contributors UCM

Date 28/04/2022

Document status Final

Document version 1.0

Disclaimer: The communication reflects only the author’s view and the Research Executive Agency is not
responsible for any use that may be made of the information it contains

 D3.3 Final User and Community Models
 SPICE GA 870811 V1.0, 28/04/2022

2

INTENTIONALLY BLANK PAGE

 D3.3 Final User and Community Models
 SPICE GA 870811 V1.0, 28/04/2022

3

Project information

Project start date: 1st of May 2020

Project Duration: 36 months

Project website: https://spice-h2020.eu

Project contacts
Project Coordinator

Silvio Peroni

ALMA MATER STUDIORUM -
UNIVERSITÀ DI BOLOGNA

Department of Classical
Philology and Italian Studies –
FICLIT

E-mail: silvio.peroni@unibo.it

Project Scientific coordinator

Aldo Gangemi

Institute for Cognitive
Sciences and Technologies of
the Italian National Research
Council

E-mail: aldo.gangemi@cnr.it

Project Manager

Adriana Dascultu

ALMA MATER STUDIORUM -
UNIVERSITÀ DI BOLOGNA

Executive Support Services

E-mail:
adriana.dascultu@unibo.it

SPICE consortium

No. Short name Institution name Country

1 UNIBO ALMA MATER STUDIORUM - UNIVERSITÀ DI BOLOGNA Italy

2 AALTO AALTO KORKEAKOULUSAATIO SR Finland

3 DMH DESIGNMUSEON SAATIO - STIFTELSEN FOR DESIGNMUSEET SR Finland

4 AAU AALBORG UNIVERSITET Denmark

5 OU THE OPEN UNIVERSITY United
Kingdom

6 IMMA IRISH MUSEUM OF MODERN ART COMPANY Ireland

7 GVAM GVAM GUIAS INTERACTIVAS SL Spain

8 PG PADAONE GAMES SL Spain

9 UCM UNIVERSIDAD COMPLUTENSE DE MADRID Spain

10 UNITO UNIVERSITA DEGLI STUDI DI TORINO Italy

11 FTM FONDAZIONE TORINO MUSEI Italy

12 CELI MAIZE SRL Italy

13 UH UNIVERSITY OF HAIFA Israel

14 CNR CONSIGLIO NAZIONALE DELLE RICERCHE Italy

 D3.3 Final User and Community Models
 SPICE GA 870811 V1.0, 28/04/2022

4

Executive summary

D 3.3 provides a report on the development and testing of the final versions of the user and community
modelling components in SPICE. To date, after continuous study of the user modelling requirements of the
different case studies, the initial user model and community model data structures were refined and
finalized, as well as APIs for accessing the data. In addition to the mechanism for explicitly (manually) setting
and defining user modelling data (user characteristics) that was developed and demonstrated to case studies
users, a reasoning mechanism was developed and integrated into the user modelling component. An initial
mechanism for community modelling was implemented and experimented in simulation. A challenge we
faced (and probably continue to face) is the uncertainty about specific requirements of case studies and the
unstable situations in the museum case studies. Some are due to the COVID-19 issues that could eventually
lead to some readjustments of the original case studies while others may be simply the result of the evolution
of the case studies. This led us originally to develop flexible mechanisms that accommodate diverse
requirements. Still, it may be needed to further adapt the user model and user modelling component during
the 3rd year. The details of the technology are described in this deliverable. In this stage the specific internal
reasoning mechanisms of the user and community modelling were further developed and adapted according
to emerging requirements of the case studies. We also spent a major effort integrating the different
technologies both within WP3 and between the other packages.

 D3.3 Final User and Community Models
 SPICE GA 870811 V1.0, 28/04/2022

5

Document History

Version Release date Summary of changes Author(s) -Institution

V0.1 20/03/2022 First draft released, WP3 review Belen Diaz Agudo
(UCM), Iris Reinhartrz-
Berger, Tsvi Kuflik and
Alan Wecker (UH),
Guillermo Diaz

V0.2 21/04/2022 Final draft for external review

V1.0 28/04/2022 Final version submitted to REA UNIBO

 D3.3 Final User and Community Models
 SPICE GA 870811 V1.0, 28/04/2022

6

Table of Contents

1. Introduction 7

2. User Model 7

2.1 Motivation and justification 7

2.2 General Structure 8

2.3 Accessing the User Model 10

2.4 Example of Use 12

3. Community Model 12

3.1. Review of main definitions 12

3.2 Data inputs for the Community model 14

3.3 Community model relationships for reflection processes 16

3.4 Community model API 17

3.5 Explanations and visualisation of the Community model 19

4. Interaction within Work Package 3 25

5. Interaction (of the UM and CM) with other Work Packages 26

6. Interaction with case studies 28

7. Conclusions and future work 29

8. Instructions (locations of material) 30

9. References 30

a. User Model 30

b. Community Model 30

Appendix 32

1. User Model File Structure 32

1. SPICE-UserModel-API REST 33

1. Screenshots 33

1. React example of wrapped REST calls 34

1.4.1.1. User Service 34

1.4.1.2. Property Service 35

1.4.1.3. User Generated Content Service 35

1.4.1.4. User History Service 36

 D3.3 Final User and Community Models
 SPICE GA 870811 V1.0, 28/04/2022

7

1. Introduction
WP3 Delivery 3.3 focusses on providing the technological infrastructure that enables reasoning about
individuals, their characteristics and preferences, the explicit communities they identify themselves with and
the implicit communities that evolve from analysing content contributed by these individuals. WP3, itself, is
composed of 4 closely related components (see figure 1): (1) individual and community models (existing
models in figure 1), which are the data structures that contain information about individuals and
communities (concepts taken from WP6 ontologies) and stored in the linked-data hub (included in D3.3); (2)
user modeller (circled in yellow in figure 1) and community modeller (circled in green in figure 1) which are
the reasoning mechanisms that monitor the users continuously, reason about their behaviour and infer their
preferences and community relatedness and update the models accordingly (included in D3.3); (3) textual
content analysis (D3.4) that provides input data (taken from the user interface and analysed) for the user and
community modelling components to reason about; and (4) a recommender system (D3.6) that uses the user
models and scripts (guidelines/instructions for activities, generated by WP6) for guiding the process of
content recommendation to users.

Figure 1: The user modeller and the community modeller and the internal and external interaction within WP3 and of WP3 with
other WPs. The user modeller is circled in yellow; the community modeller is circled in green. The user and community models are
stored in the LDH and the modellers continuously reason and update them. The analysed user generated content is used as an input
and the user and community models are used by the recommender.

D3.3 focusses on the individual and community user models and user modelling components. The document
is organized as follows:

It starts with an abstract description of the user model and the user modeller and its services, and then
describes the community model and community modeller and its services. Following is a description of the
internal and external links of WP3. Finally, there are conclusions reached so far. An appendix includes detailed
APIs, usage examples and code of the different services.

2. User Model
2.1 Motivation and justification
In the SPICE project, user models represent the individuals that are interacting with the system. They are
key elements (together with the community models) used to guide the process of content recommendations
to individuals, taking into consideration individual and community interests, as well as script guidelines
(WP6), to search and identify relevant users’ contributions, to provide alternative interpretations of objects,

 D3.3 Final User and Community Models
 SPICE GA 870811 V1.0, 28/04/2022

8

to promote the social contagion among users and to emphasize the similarities and differences within and
across communities.

In this document we review the studies carried out to identify what user characteristics are relevant (and
needed to be represented) for the project. The information gathered through a series of project meetings
guided the development of the initial version of the user model (a data structure containing users’
information) as well as a communication protocol to access the data and a user modelling component to
maintain it. The initial versions were refined during the 2nd year as new requirements were made by the case
studies. The procedure was as follows: first the case studies submitted scenarios, these were examined for
user and community characteristics which were categorized within known generic user model categories.
The results of these items were then discussed in meetings with each of the case studies.

With respect to the user model, deliverable D3.1 described the interim model for SPICE and the current
deliverable describes the final version developed as the result of ongoing interactions with case studies
leaders and other work package leaders.

2.2 General Structure
The deliverable consists of prototype code of REST APIs1, built using the SPRING boot framework2 and this
document which describes the role which the user model plays in the overall project. In terms of deployment
in the project the intention is that each case study would instantiate its own version of the REST server. In
addition, a REACT frontend3 was developed which gives an example of how to use the REST services.

The model is constructed in such a way that use cases can either call them in batch mode or continuously.
The CM can be notified via an API when there is a change (again batch or continuously).

The User Model (UM) component provides five types of major services (controllers). The first concerns
configuring the user model. The second concerns the creation, retrieval, update, deletion (CRUD) of users
within the model. The third concerns the properties of an individual user and provides CRUD services for
each property. Each case study can configure the user model to use the properties it feels necessary for its
scenario. The values of the user model can be grouped to form communities implicitly in the community
model.

There are a number of basic concepts:

User – This is an individual who is modelled based on properties that are organized into different categories
(Identity, Demographics, Traits, Beliefs/Values, Interests, Skills, Communities, Current Contexts). A property
is configured by giving it a name, how it is constrained (what the allowable values are) and an aggregation
strategy (how we handle multiple calls to configure this property). Aggregation strategies can be: latest (last
one given), first (first value given all others ignored) average (mean of all values given) or weighted average
(mean with later entries given more weight). In addition, when a property is added one can add information
such as in what context the information was added, what the source of the information was and whether it
was explicitly given by the user or implicitly derived based on some observed behaviour or other factors.

Next is a table that presents the different categories followed by a further explanation of the categories
and their possible use in the case study scenarios:

1 https://en.wikipedia.org/wiki/Representational_state_transfer
2 https://spring.io/projects/spring-boot
3 https://reactjs.org/

 D3.3 Final User and Community Models
 SPICE GA 870811 V1.0, 28/04/2022

9

Table 1: User model information categories

Category Stability Examples Structure
+(derivation, date)

Derivation
mode
(derived
from)

Scenario (Case
Studies, possible
properties)

Identity High id#, password type, name, value, Explicit All

Demographics Medium-
high

A18Y, religion,
ethnicity

type, name,
parameter,

 Explicit DMH-Age,
Gender,
Education,
Languages,
Organizations

Traits Medium-
High

Personality,
Learning Style,
Preferred Curation
Type, Current Falk
Identity

type, name, degree,
parameter

 Explicit

Beliefs (Values) Medium-

High

 type, name, degree,
parameter

 Derived Hecht - Patriotic,
Religious

Interests Medium Abstract concepts, type, name, value
on scale, {concept,
activity}

Explicit
(questionnair
e)

Implicit (User
Activity)

 All, implicit
groups based on
interests

Skills Medium-
High

Curation, Writing
(Language) Reading
(Language)

 DMH Activities

Communities Medium-
High

 Implicit All

Current Context Low Social, Spatial,
Temporal,
Emotional,
Environment,
System

 Useful for scripts

Identity – These are properties which identify the user (e.g., ID, email, password). Necessary if we want to
use the models over more than one session. The identity will contain a specific property called
ExplicitGroup which will be the name of the group which the user visited with if he came with as a group.

Demographics – Descriptive of the user which are fairly stable (e.g., age, gender, place of birth). These can
be used to help form explicit communities (see below).

Traits – Values which describe the user (e.g., personality, learning style). These can be used as shortcuts to
determining properties.

Beliefs/Values - Items the user holds (thinks) and are important/to be of value. These can be useful in the
formation of implicit groups and/or common ground.

Interests - Items that the user likes. These could be evidenced by how long s/he views an artefact
connected to an interest. These can be used to improve user satisfaction or find common ground.

Skills – Things that the user is good at or believes s/he is good at. Useful for determining what scripts to run

 D3.3 Final User and Community Models
 SPICE GA 870811 V1.0, 28/04/2022

10

Communities - Either explicit communities obtained from the user info or implicitly derived from
community model. Used by recommender for choosing content

Current Contexts – Info about the user’s current environment (system, display capabilities, weather). May
be useful in determining which scripts to run.
The following table shows the categories and some of their characteristics (Structure is what items make up
the values and always include the source (derivation) and date added/last updated).

2.3 Accessing the User Model
The following is a list of the REST APIs based on the three major services described above.

The user controller allows for additions of users to the model. Again, it includes basic CRUD functionality,
with an additional helper function which lets you get a certain property across all users. Usually, a user is
created at the start of an interaction.

Figure 2: managing user models

The property controller allows you to manage (CRUD) each specific property for each individual user. The
additional functionality includes retrieving all properties, all properties of a certain user, and all properties
of a certain (property) name. Properties are either created and updated during user interactions or can be
created at the end of a phase of user interactions, in anticipation of the next phase of user interactions

 D3.3 Final User and Community Models
 SPICE GA 870811 V1.0, 28/04/2022

11

Figure 3: Property controller – an API for accessing user model (user) properties

The user-generated-content (UGC) controller allows you to manage (CRUD) each specific UGC for each
individual user. The additional functionality includes retrieving all UGCs, all UGCs of a certain user, and all
UGCs of a certain name. This controller is used internally by the User Model. We give UGC by the UI run it
through the Semantic Analyzer and integrate results in the User Model

Figure 4: UGC controller – an API for accessing and managing the user generated content

See Appendix A for the details of the layout of the file structure of the code. A more detailed description of
the APIs, organized by the five major services, can be found in D6.4.

 D3.3 Final User and Community Models
 SPICE GA 870811 V1.0, 28/04/2022

12

2.4 Example of Use
Screenshots of the React frontend can be found in Appendix C.

We discuss here new example from a real use Case (Hecht). the hspice and studentmgr applications. The
hspice mainly stores info into the user model by interactions with the students, while studentmgr can be
used to query data from the UM for use by teachers and researchers. The studentmgr is based on
Usermodel demo but contextualizes and groups the information into a form more usable by teachers and
researchers. The hspice app is an app used both in the classroom and museum where the student
responds to questions and creates content. Since the app is in Hebrew, we only provide a link to them (see:

https://hspice.haifa.ac.il/hspice

https://hspice.haifa.ac.il/studentmgr

Since React doesn’t know how to make REST calls directly, we use the axios4 library to wrap the calls. In
D6.4 we give detailed information concerning the fives services that are implemented to cover the User
Model API (examples of the service calls from React to the REST APIs) and used to implement the screens in
React (presented in Appendix C).

3. Community Model

In the SPICE project, communities are key elements to search and browse contents of interests, to identify
similarities and differences across users and their contributions, to provide alternative interpretations of
objects, to promote the social contagion among users and to emphasize the similarities and differences
within and across communities. Detection, visualisation and explanation of communities allow for the
exploration, reflective reasoning and social cohesion of the users. In previous Document Deliverable D3.1
("Prototype User and Community Model") we reviewed the initial investigations performed in SPICE
regarding the types of communities required and the information to detect and represent them. In this
document D3.3 we detail the advancements in the Community model, detection and visualisation. We first
review the main definitions regarding the community model.

3.1. Review of main definitions
Communities are groups of users with shared characteristics. All the citizens in the same community share
certain attributes. This set of shared attributes depends heavily on the data set and the characteristics of the
case study. A community identifies a group of users that are heavily connected (according to a certain
similarity measure) among themselves, but sparsely connected to the rest. Users are asserted to belong to
certain explicit communities, but they will be inferred to belong to the so-called implicit communities.

Implicit communities are detected by community detection algorithms using two types of attributes (see next
section 3.2. Data inputs for the community model): personal attributes from the user model (demographics,
age, gender) and interaction attributes related to user opinions on items or abstract concepts from the
content model. Community detection algorithms are based on assessing similarity between users. As
different communities may be formed using different sets of features, the same user can be classified in
different communities within different criteria, features and combination of features. All the community
detection algorithms can be configured by the museum curators to assure that each community is meaningful
enough for a certain museum.

In the interaction with the use cases, we have also dealt with persona or profiles that are related with the
concept of explicit community. A persona is a realistic interpretation of our end users (see also D7.3 and
D7.5). It characterises the range of attributes defined by a user profile. A persona represents a user type that
might use the system in a similar way. Creating personas will help us understand users' needs, experiences,

4 https://github.com/axios/axios

 D3.3 Final User and Community Models
 SPICE GA 870811 V1.0, 28/04/2022

13

behaviours and goals. Examples: teachers, members of a certain association, deaf people, elder people.
Although we understand that conceptually an explicit community is not the same as a persona, in the
community model, we make analogies between both. In the analysis of the use cases, the museum curators
have identified the main personas and profiles. We have correspondingly used these profiles as the main
source for the definition of the set of explicit communities. These explicit communities have been formalised
in one of the ontologies of WP6 (explicit community ontology). It is important to note that a community
(either explicit or implicit) could integrate different personas, and within the same persona profile we can
detect different communities that differ in user attributes (i.e., classes from different schools, from different
religions).

Examples of explicit communities have been defined using the persona profiles defined in some of the project
use cases (in WP7) that represent user archetypes summarising common behaviours (like teachers in the
children's school visits). Other examples of explicit communities could be a children group from a certain
school, or visitors from an association. Explicit communities are those communities characterised by a set of
attributes defined explicitly by curators, according to museum interests. Explicit communities can be defined
using restrictions over personal attributes, for example, elderly people are users whose age is over 65 years-
old, or Catholic students are users whose religion is catholic and whose education is school. Also, curators
can define explicit communities using interaction attributes, for example, Picasso lovers are users who like
items whose author is Picasso, and, Catholic Students are user who consider that Josephus Flavius is a Traitor
(HECHT Museum Case Study). Document5 includes a detailed list of the explicit communities.

Communities can also be classified as persistent, which are those that are stable in time and can be defined
in the explicit community ontology as part of the user model; or temporal (also virtual) communities, which
have a temporary and dynamic character and arise with new users, new opinions, stories and/or reflections.
Virtual communities are detected using the community detection algorithms and can become persistent and
included in the ontology if required.

SPICE communities can be open communities that are those where citizens can join freely, for example,
“Picaso lovers” or closed that are those where citizens only belong according to their features (Elder people,
Italian citizen).

It is worth noting that in the literature we have found other classifications of types of communities. For
example, it is common to distinguish between Communities of Practice (CoP) and Communities of Interests
(CoI) [Cantador 2011]. CoP are groups of people who get involved in a process of collective work in a shared
domain of human endeavour. Members engage in joint activities and discussions, help each other, and share
information. They develop a shared repertoire of resources: experiences, stories, tools, ways of addressing
recurring problems—in short, a shared practice. Communities of Interest (CoI) are a particular case of CoP,
which have been defined as a group of people who share a common interest or passion. They exchange ideas
and thoughts about the given passion. Although members of a CoP share a common interest, we think that
new CoIs will arise if we involve the interactions generated by users. This way, new CoIs will appear among
members of the same and different CoPs. In SPICE, we refer to communities in general, but the community
model does not explicitly distinguish between CoPs or CoIs as it is not required for reflective reasoning and
social cohesion purposes.

The SPICE community model supports the exploration of objects and interpretations, and also helps the
recommender system find contents of interest. Besides, communities of users help the recommender system
avoid the cold start problem as, due to intra-community similarity, a new user can be treated like other users
from the same community. The main goal of the community model is supporting the interpretation-reflection

5 There is a document where case studies defined some explicit communities:
https://liveunibo.sharepoint.com/:x:/r/sites/spice-
h2020/Shared%20Documents/SPICE%20H2020%20Documents/Case%20Studies/Community%20Modelling/Explicit%2
0Communities.xlsx?d=wac30d24dd7014e59a93162e1337e0947&csf=1&web=1&e=akZxPY

https://liveunibo.sharepoint.com/:x:/r/sites/spice-h2020/Shared%20Documents/SPICE%20H2020%20Documents/Case%20Studies/Community%20Modelling/Explicit%20Communities.xlsx?d=wac30d24dd7014e59a93162e1337e0947&csf=1&web=1&e=akZxPY
https://liveunibo.sharepoint.com/:x:/r/sites/spice-h2020/Shared%20Documents/SPICE%20H2020%20Documents/Case%20Studies/Community%20Modelling/Explicit%20Communities.xlsx?d=wac30d24dd7014e59a93162e1337e0947&csf=1&web=1&e=akZxPY
https://liveunibo.sharepoint.com/:x:/r/sites/spice-h2020/Shared%20Documents/SPICE%20H2020%20Documents/Case%20Studies/Community%20Modelling/Explicit%20Communities.xlsx?d=wac30d24dd7014e59a93162e1337e0947&csf=1&web=1&e=akZxPY

 D3.3 Final User and Community Models
 SPICE GA 870811 V1.0, 28/04/2022

14

loop and the recommendation tasks involved in this loop. More precisely, it is responsible for discovering
implicit communities to reason about inter and intra relationships among explicit communities for promoting
social cohesion, suggesting alternative perspectives to broaden the framework of dialogue and
understanding.

The community model represents the set of all the communities (explicit and implicit) and their descriptions
and relations. The community model can be queried using the API that includes endpoints with services for
communities, users and contributions and explanations. The REST API documentation is available at:
http://spice.fdi.ucm.es/

In the current version we (ideally) assume that the community model is always up-to-date. That is, each time
a new user and/or a new contribution is included in the system, the community model has resources to
recompute the whole community set.

The discussion and review of the main community detection algorithms have been described in Deliverable
3.5: Prototype clustering techniques. Community detection algorithms need to be configurable for each case
study. More specifically, each use case could have a different configuration of the similarity functions from a
set of predefined functions (see Catalogue of similarity measures in Annex of Deliverable 3.5). Many different
alternatives have been reviewed as there is no clustering algorithm that can be universally used for every
type of dataset, and there are no similarity functions that work smoothly with every clustering algorithm on
every dataset. Configuration and parameter settings are crucial in the performance of a clustering algorithm.

The set of communities is dynamic and varies over time. We have already emphasised that users can belong
to different communities representing different perspectives (features) of the same user. These perspectives
are managed as different similarity measures. As the community model is dynamic, it needs to be updated
when new information is included in the system. Some clustering algorithms have the capability to rearrange
clusters when new data points are added to the dataset without running the algorithm from scratch.
Visualisations techniques help users to analyse, validate and explain the clusters generated by the algorithms.

3.2 Data inputs for the Community model
According to section 3 of this document (and also Deliverable Document D3.1 - "Prototype User and
Community Model"), the user models represent the individuals that are interacting with the system.

Users are described using different types of properties (demographic, cultural, skills...) contained in the user
model. These properties will be called personal attributes for the rest of the document.

Museums store collections of items. According to Deliverable Document D4.1 (“Distributed Linked Data
Infrastructure”) the linked data infrastructure supports the storage of museum collections using multiple
ontologies. Users interact with items generating their own content (reflection, opinion, interpretations,
comments, reaction to opinions…). Content/emotions analysis module (D3.2 - “Semantic annotation of social
curatorial products”) generates information about user interests based on emotions, sentiment, attitudes,
and so on (user1 likes Item1; user1 hates Item1; Item1 evokes fear on user1) and it is stored in the user
model. This information links users and items. Generally speaking, these interactions can be represented as
a tuple (user, item, interaction value), where the interaction value can be an emotion, a positive-negative
rating, a conceptual value, etc. This information individualised for a user, will be called interaction attributes
for the rest of the document. Note that some of the use cases have reported examples where a group of
users interact with museum items as a whole (in the MNCN case study, children work in pairs and not
individually). In this case, if the group members are known, these interactions will be translated into (user,
item, interaction value) tuples for each member of the group. Also note that users can also generate content
about abstract concepts, subjects (or beliefs) that are related to a museum activity instead of specific items
from the content model (in the HECHT case study, students fill in a questionnaire about their beliefs whether
Joseph Flavius is a traitor). This user generated content is also formalised as interaction attributes,
represented as tuples (user interaction activity-concept) and stored in the user model.

As we have described in section 3.1, the Community Model distinguishes between two types of communities:
explicit communities that are defined on demand by museum curators, and implicit communities that are

http://spice.fdi.ucm.es/

 D3.3 Final User and Community Models
 SPICE GA 870811 V1.0, 28/04/2022

15

discovered based on user personal attributes and the information extracted from user interactions
(interaction attributes).

Users are adhered to explicit communities in two ways:

• Curators adhere users to explicit communities. It is very useful when the users are anonymous (we
do not know any personal attribute about the user) but activities are organized by groups of users
that belong to the same community. This way, the community attributes are transferred to its
members.

• Community Model adheres users to a community by assertion, checking which users satisfy the
restrictions defined by the explicit community.

The later adhesion system is based on the User Model Ontology. Curators must define explicit communities
based on restrictions over personal and interaction attributes that must be transformed into assertions over
properties in the User Model Ontology. Figure 5 shows an excerpt of the ontology with some of the explicit
communities of the case studies.

Figure 5: A snapshot of the User Model Ontology

 D3.3 Final User and Community Models
 SPICE GA 870811 V1.0, 28/04/2022

16

Figure 6 shows an example of assertions.
DataPropertyAssertion(
a:hasAge a:Meg "17"^^xsd:integer)

Meg is seventeen years old.

SubClassOf(
DataSomeValuesFrom(a:hasAge
 DatatypeRestriction(
 xsd:integer
 xsd:minInclusive "13"^^xsd:integer
 xsd:maxInclusive "18"^^xsd:integer
)
)
 a:Teenager
)

Objects that are older than 13 and younger than 18 (both
inclusive) are teenagers.

Figure 6: Examples of assertions using a User Model Ontology

The first axiom states that a:Meg is connected by a:hasAge to the literal "17"^^xsd:integer. By the second
axiom, each individual connected by a:hasAge to an integer between 13 and 18 is an instance of a:Teenager.
Therefore, this ontology entails that a:Meg is an instance of a:Teenager — that is, the ontology entails the
following assertion ClassAssertion(a:Teenager a:Meg).

3.3 Community model relationships for reflection processes
In this section we describe an example to define the relationships that can be employed for promoting social
cohesion in the context of the community model. In the figure below, users are represented as dots where
the colour represents the explicit community that the user belongs to. In the example, we have two explicit
communities (blue and yellow) with six users each. Implicit (discovered communities) are represented by red
ellipses. They are the result of running some of the community detection algorithms described in Deliverable
3.5: Prototype clustering techniques. Before running the community model detection algorithm, it needs to
be configured using similarity measures on different attributes (user attributes and/or interaction attributes)
with different importance (weights). In Deliverable 3.5: Prototype clustering techniques we review different
community detection algorithms based on clustering (K-means, hierarchical clustering…) [Xu 2015] and based
on Graph analysis (Louvain method, modularity, Markov Clustering…) [Fortunato 2010, Yang 2016]. Both
types of algorithms will heavily rely on the definition of the similarity functions. For example, we may be
interested in communities of users that share similar personal profile features (demographics, age, gender)
from the user model and could also combine these by identifying similar interpretations on similar contents.
The use of different similarity metrics will change the set of communities in the community model, and
therefore we need to include configuration capabilities using a catalogue of semantic similarity metrics.

In Figure 7, we have graphically shown that the community model is multi-layer. Every layer includes the
same set of nodes (users), but each layer represents the relationship among users using a different
perspective (i.e., similarity function): in the example, layer1 groups together users with the same evoked
emotion on the same item, and layer2 uses a similarity function based on item attributes. As it is represented
in the figure, the same user can be categorized into different implicit communities in different layers). On
each layer, different communities have been detected using a similarity measure. Each similarity function
could combine features (and weights for them) from the user model (T3.1), the interactions with artworks
(interpretations) (T3.2) and content model (ontologies from WP4 and WP6).

 D3.3 Final User and Community Models
 SPICE GA 870811 V1.0, 28/04/2022

17

Figure 7: A multi-layer representation of the Community Model

In the following examples, we describe how reflection processes can interestingly find relationships between
communities in different layers according to the users who belong to them.

Intra-community similarity

Users from the same explicit community belong to the same implicit community in the same plane/level. E.g.
{3, 4, 5, 6} in Sim2

Users from the same explicit community have common implicit communities in different planes/levels E.g.
{1, 2} or {3, 4, 5} in both planes/levels

Intra-community differences

Users from the same explicit community belong to different implicit communities in the same plane/level.
E.g. {3, 4, 5} and {6, 7} in Sim1

Users from the same explicit community have common implicit communities in different planes/levels E.g.
{1, 2} or {3, 4, 5} in both planes/levels

Inter-community similarity

Users from different explicit communities belong to the same implicit community in the same plane/level.
E.g. {3, 4, 5} and {1,2} in Sim1

Inter-community differences

Users from different explicit communities belong to the different implicit communities in the same
plane/level. E.g. {3, 4, 5, 6} and {1,2} in Sim2

3.4 Community model API
The Community Model API (CM-API) is the access point to the Community Model. It exposes a set of REST-
based operations for accessing information about implicit and explicit communities, as well as endpoints
for operations related to similar and dissimilar communities. CM-API is also employed by the User Model to
notify changes in user attributes and the creation of new user generated content. The CM-API acts as a
façade that hides the modules that appear in Figure 8.

 D3.3 Final User and Community Models
 SPICE GA 870811 V1.0, 28/04/2022

18

Figure 8: Overview of the CM-API infrastructure

The documentation of this API is available at http://spice.fdi.ucm.es/ and a deeper description of the CM-
API is available at D6.4. APIs Specifications.

The CM-API concerns:

• Two entry points regarding USERS (Figure 9):

• One for querying about the communities that a user belongs to.
• One for injecting user contributions in the CM.

Figure 9. Entry points for user information

• Three entry points to query information about communities (Figure 10):

• The communities within the CM.
• The information about a concrete community.
• The users that belong to a community.

Figure 10. Entry points for information about communities

• Four entry points to provide services about similarity and dissimilarity between communities (Figure
11):

• Two services to provide the k-most similar/dissimilar communities to a given one.
• Two services to compute the similarity/dissimilarity between two given communities.

 D3.3 Final User and Community Models
 SPICE GA 870811 V1.0, 28/04/2022

19

Figure 11. Entry points for querying similarity and dissimilarities between communities

3.5 Explanations and visualisation of the Community model
The community model includes visualisation and explanation capabilities that allow users, both citizens and
curators, to understand, for example, why a certain user belongs to a certain community, what are the
commonalities shared by the users of this community and what are the differences within other nearby
communities. A community can be explained through the common shared characteristics, that are based on
the similarity measure used to detect it. A symbolic description of these common characteristics can be built
using graph-based analysis techniques (like Formal Concept Analysis). We published our results about the
use of FCA to explain at [Jorro 2020].

Intra-community visualisation allows to understand the relations between explicit and implicit communities.
Automatic explanations are based on common and different features shared by the community members.
Figure 12 and Figure 13 show a mock interface for the visualization of these relationships and how the
explanations can be displayed.

Figure 12: Visualization about the relationship between explicit (solid) and implicit (dotted) communities

 D3.3 Final User and Community Models
 SPICE GA 870811 V1.0, 28/04/2022

20

Figure 13: Automatic explanations about relationships among communities

Besides, we can visualize and get inter-community explanations based on the common properties shared by
the citizens in the selected community. Figure 14 and Figure 15 shows a mock interface for the visualization
of these relationships and explanations.

Figure 14: Visualization of inter-community similarities between citizens

 D3.3 Final User and Community Models
 SPICE GA 870811 V1.0, 28/04/2022

21

Figure 15: Explanations about inter-community relationships

When using graph analysis algorithms, the community model can be visualised as a similarity graph (network)
where nodes represent users and links represent the similarity connections between them with different
forces. A community identifies a group of nodes that are heavily connected among themselves, i.e., similarity
connection is strong, but they are sparsely connected to other nodes of the graph, i.e., there is a weak
similarity connection between them. Figure 16 shows an example, where communities are visualised through
colours. Visually, the thicker lines represent strong similarity connections between the nodes.

Figure 16. A graph representation of communities

The CM-API has been tested using a preliminary prototype of a visualisation tool based on graph algorithms
using an example dataset of the Prado Museum, based on Wikiart Emotions dataset [Saif2018] and enhanced
with synthetic data. The code of the prototype is at https://github.com/jljorro/communities_visualization.

 D3.3 Final User and Community Models
 SPICE GA 870811 V1.0, 28/04/2022

22

An example of the prototype can be executed at: https://jljorro.github.io/communities_visualization/ (Figure
17). Communities can be interactively explored using this tool.

Figure 17: A snapshot of the visualization tool available at https://jljorro.github.io/communities_visualization/

In this example, two artworks are linked if they evoke the same emotion (according to Plutchik’s wheel of
emotions [Plutchik 2001]) for the users of the selected community. For each community we visualise the
artworks that are representative of this community in the right-side graph (Figure 18).

Figure 18: Community visualization and an explanation based on the representative artworks for a community.

This prototype also contains an interactive explanation (based on FCA lattices) for a given community
(Figure 19).

https://jljorro.github.io/communities_visualization/

 D3.3 Final User and Community Models
 SPICE GA 870811 V1.0, 28/04/2022

23

Figure 19: Explanations based in FCA lattices.

We are currently working on two types of community explanations:

• Explanations based on attributes: we have applied FCA to extract the common attributes that
represent the community [Jorro 2020]. These attributes can be a combination of personal and
interaction attributes.

• Explanations based on examples: the community is explained by the centroid or by a synthetically
created individual that represents the statistical average or mode of the values on the real attribute
values of the members of this community. The explainer individual can be also a real user whose
attributes are the most representative of the community.

Figure 20 shows an example of the use of Formal Concept Analysis (FCA) to obtain intra-community
explanations in the IMMA data set:

 D3.3 Final User and Community Models
 SPICE GA 870811 V1.0, 28/04/2022

24

Figure 20: An example of the application of FCA for the IMMA data set

And Figure 21 shows an analogue example using the Prado Museum data set:

Figure 21: An example of the application of FCA for the Prado Museum data set

 D3.3 Final User and Community Models
 SPICE GA 870811 V1.0, 28/04/2022

25

4. Interaction within Work Package 3
Interaction between Modules in Work Package 3 (extracted from RS Demo Hecht available at
https://liveunibo.sharepoint.com/:w:/r/sites/spice-
h2020/Shared%20Documents/SPICE%20H2020%20Documents/Work%20Packages/WP3/Design%20Docs/R
S_Demo%20Hecht.docx?d=w55e8051aa857461393b2ea06069c37a5&csf=1&web=1&e=eOfdK9):

As noted above, WP3 is composed of several distinct components that interact and collaborate in order to
provide the visitor a personalized service. Figure 24 presents a schematic interaction diagram of the overall
variations of the process. The general flow of the main interaction is as follows (from top to bottom): At
first, the administrator/curator configures the user and community models (UM+CM) for the case study. At
a beginning of a session the visitor fills up a questionnaire for bootstrapping the user model (UM+CM).
Then, during the visit, the user interacts with the system. The user may comment and/or provide input that
is being analysed by the semantic annotator (SA) and in response, after the analysis of the content, the user
may get recommendations for content from the social recommender (RS).

Figure 23: WP3 components interaction, from top to bottom: Case study initialization, user starts interaction and added to a
community, a user interacts with the system and the interaction triggers an update to the user model and community model and
finally, a recommendation is provided according to the user and community models.

https://liveunibo.sharepoint.com/:w:/r/sites/spice-h2020/Shared%20Documents/SPICE%20H2020%20Documents/Work%20Packages/WP3/Design%20Docs/RS_Demo%20Hecht.docx?d=w55e8051aa857461393b2ea06069c37a5&csf=1&web=1&e=eOfdK9
https://liveunibo.sharepoint.com/:w:/r/sites/spice-h2020/Shared%20Documents/SPICE%20H2020%20Documents/Work%20Packages/WP3/Design%20Docs/RS_Demo%20Hecht.docx?d=w55e8051aa857461393b2ea06069c37a5&csf=1&web=1&e=eOfdK9
https://liveunibo.sharepoint.com/:w:/r/sites/spice-h2020/Shared%20Documents/SPICE%20H2020%20Documents/Work%20Packages/WP3/Design%20Docs/RS_Demo%20Hecht.docx?d=w55e8051aa857461393b2ea06069c37a5&csf=1&web=1&e=eOfdK9

 D3.3 Final User and Community Models
 SPICE GA 870811 V1.0, 28/04/2022

26

When considering the role of the user model and the community model, it becomes clear that their
reasoning paves the way for the social recommender to provide personalized recommendations to the
current user while taking into account the users’ characteristics, the communities s/he belongs to and
according to the guidelines of the script/curator propose the relevant content. Figure 25 illustrates the
interaction of the recommender

Figure 22 Recommender System Ecosystem (Parameters, Inputs, Outputs)

5. Interaction (of the UM and CM) with other Work Packages
As already noted, WP3 relies on information and guidelines provided by other WPs in order to be able to
provide the required service to the visitors. The visitor interacts with her device, using the device’s
interface. The information from the interface is delivered, through the specific case study’s application
(controller). Then the user generated content is analysed and reasoned about by WP3 components, guided
by the relevant script and ontologies. Then, the recommender searches for an appropriate content and
delivers it back to the visitor via the user interface. Figure 26 presents a sequence diagram that illustrates

 D3.3 Final User and Community Models
 SPICE GA 870811 V1.0, 28/04/2022

27

the interactions of WP3 with the other packages:

Figure 26: sequence diagram that provides a schematic interaction of WP3 with other WPs. At the top part there is a schematic
description of an initialization of a user model during the beginning of a visit. Then there is a continuous interaction with the system
where he interactions always start and end at the user’s interface while the reasoning involves the data stored in the LDH and
ontologies that guide the process.

 D3.3 Final User and Community Models
 SPICE GA 870811 V1.0, 28/04/2022

28

6. Interaction with case studies
A series of meetings was held with the individual case studies during the first and second years. The
motivation was to try and understand the case studies needs with respect to user and community models,
in order to design them so they will be able to support these needs. Table 3 summarizes the
requirements/needs of the case studies as they envision them.

Table 3: The different case studies and their envisioned needs for community models’ data (of course based
on the individual user data)

Case Study Community Characteristics

Explicit

Community Characteristics

Implicit

Hecht Religion, Nationality, Religiosity Josephus, Roman Rebellion, Museum
Curation

MNCN Age, Rural vs Urban Attitude towards climate change
sustainability

GAM Level of Physical Challenges Emotions
DMH Age, Gender, A18Y, Occupation,

Socio-Economic Status, Location,
Interests, Connection to Helsinki,
Education Language

City vs Non-City Dwellers (Need to see
scenario of asylum seekers)

IMMA Visiting Groups: Blacks, LGBT+ Based on Artwork Interpretation

 D3.3 Final User and Community Models
 SPICE GA 870811 V1.0, 28/04/2022

29

7. Conclusions and future work
In general, for task 3.1 the goals set for the second year were achieved. The heterogeneity of the case studies
(which is a good thing) posed a challenge in terms of user modelling, posed a challenge on the development
of the user and the community models and required us to suggest creative solutions to the uncertainty and
lack of information about the intended use of the models in the case studies, which will be useful in ensuring
that the models will be flexible and applicable to a wide range of scenarios. In both the user model and the
community model components, continuous interaction with the case studies, flexible solutions to
accommodate for changing requirements and simulations were adopted in order to allow us to achieve the
first-year goals.

Regarding the User Model, the major (expected) challenge was uncertainty in what user characteristics may
be needed for modelling users, what may be explicitly provided and what will have to be inferred. The
solution was a definition of a flexible user model that may be able to accommodate any user characteristic
in the form of attribute-value pair. This allows the system administrator (we hope to upgrade the demo to
the level of a curator in the future) to configure the relevant user model for a specific system using a
dedicated configuration tool. It also allows a combination of explicit definition of user characteristics,
together with an inference mechanism that is based on concepts extracted from the user generated content
and the sentiment towards them, extracted by T3.2.

This past year’s tasks included:

● Developing the reasoning mechanism for updating user preferences
● Helping the case studies utilize the user/community model to enable recommendations
● Integrating the user and community model and user modelling component with the recommender

system
Future tasks are:

● Integrating the user modelling mechanism into the museum case studies (WP 7.3) using Hecht as a
prototype example for the other case studies

o Integrating JSON-LD Hub

Regarding the Community Model, we have accomplished the goals associated with community
representation and modelling including the study of services to communicate with other modules of the
project. Until now, we have worked with synthetic user data and tested and reviewed some of the state of
art clustering and community detection algorithms. Besides, we have started the tasks related with the
development of tools for exploring aggregations of interpretations, visualization and interaction. We tested
different clustering techniques for identifying commonalities and variabilities among the communities using
artificial users and content (see Deliverable 3.5 for more details). We explored with different types of
communities: explicit, implicit, persistent, virtual, temporal. Some of the use cases have already reported
the explicit communities they envision in their museums.

In cooperation with WP6 and WP4 we have analysed the relationships among clusters in the community
model and the content concept ontologies. This initial exploration has resulted in two lines of cooperation:
the first one is the use of ontologies as knowledge to compute similarity metrics that are needed in the
community detection algorithms. The second line is the relation of communities with the defined concepts
from the conceptual ontologies in the project. Explanation of communities will allow to identify what are the
most representative terms that will be used to link the communities with the concept ontology. This will
enable users to browse the ontologies and the repository of content through the community model. This
cooperation needs to be extended in the future to define semantic similarity based on ontological content,
and allowing some of the implicit communities identified through the algorithms to be included as concepts
in the ontologies (only for stable communities).

Various clustering techniques, like K--means or formal concept analysis have already been experimented
although we need to explore further to identify the most effective techniques for the task. The homogeneous

 D3.3 Final User and Community Models
 SPICE GA 870811 V1.0, 28/04/2022

30

groups of similar interpretations will be used to identify and represent the "interpretation archetypes" that
will support the design of recommendation models tailored for the different user communities developed as
part of task 3.1.

Finally, it is worth noting that even though the formal work on the user and community modellers/models is
completed, slight changes and modifications are expected as the needs of case studies will evolve.

8. Instructions (locations of material)
This document can be found at ZENODO (DOI according to version) 10.5281/zenodo.4708753

The source code Version 2.1 for the User Model can be found at ZENODO 10.5281/zenodo.4724887. Latest
version is 10.5281/zenodo.4724886.

A draft version of the user model REST API can also be found at:
https://app.swaggerhub.com/apis/ajwecker/SPICE-UserModel-API/v0#/user-controller

A draft version of the community model REST API is available at: https://app.swaggerhub.com/apis-
docs/gjimenezUCM/SPICE-CommunityModelAPI/v.1.1

9. References

a. User Model
Alexandridis, G., Chrysanthi, A., Tsekouras, G. E., & Caridakis, G. (2019). Personalized and content adaptive

cultural heritage path recommendation: an application to the Gournia and Çatalhöyük archaeological
sites. User Modeling and User-Adapted Interaction, 29(1), 201–238. https://doi.org/10.1007/s11257-
019-09227-6

Antoniou, A., Katifori, A., Roussou, M., Vayanou, M., Karvounis, M., Kyriakidi, M., & Pujol-Tost, L. (2016).
Capturing the Visitor Profile for a Personalized Mobile Museum Experience: an Indirect Approach.
http://chess.madgik.di.uoa.gr:10005/cvs-

Cena, F., Likavec, S., & Rapp, A. (2019). Real World User Model: Evolution of User Modeling Triggered by
Advances in Wearable and Ubiquitous Computing. Information Systems Frontiers, 21(5), 1085–1110.
https://doi.org/10.1007/s10796-017-9818-3

Leung, R., & Law, R. (2010). A review of personality research in the tourism and hospitality context. Journal
of Travel and Tourism Marketing, 27(5), 439–459. https://doi.org/10.1080/10548408.2010.499058

Musto, C., Semeraro, G., Lovascio, C., De Gemmis, M., & Lops, P. (2018). A framework for holistic user
modeling merging heterogeneous digital footprints. UMAP 2018 - Adjunct Publication of the 26th
Conference on User Modeling, Adaptation and Personalization, 97–101.
https://doi.org/10.1145/3213586.3226218

Roussou, M., & Katifori, A. (2018). Flow, staging, wayfinding, personalization: Evaluating user experience
with mobile museum narratives. Multimodal Technologies and Interaction, 2(2).
https://doi.org/10.3390/mti2020032

Spallazzo, D. (2012). Sociality and Meaning Making in Cultural Heritage Field. Designing the Mobile
Experience.

b. Community Model
Cantador, I., Castells, P. (2011). Extracting multilayered Communities of Interest from semantic user

profiles: Application to group modelling and hybrid recommendations. Computers in Human Behavior
27, 4 (July 2011), 1321–1336 https://doi.org/10.1016/j.chb.2010.07.027

https://app.swaggerhub.com/apis/ajwecker/SPICE-UserModel-API/v0#/user-controller
https://app.swaggerhub.com/apis-docs/gjimenezUCM/SPICE-CommunityModelAPI/v.1.1
https://app.swaggerhub.com/apis-docs/gjimenezUCM/SPICE-CommunityModelAPI/v.1.1
https://doi.org/10.1007/s11257-019-09227-6
https://doi.org/10.1007/s11257-019-09227-6
http://chess.madgik.di.uoa.gr:10005/cvs-
https://doi.org/10.1007/s10796-017-9818-3
https://doi.org/10.1080/10548408.2010.499058
https://doi.org/10.1145/3213586.3226218
https://doi.org/10.3390/mti2020032
https://doi.org/10.1016/j.chb.2010.07.027

 D3.3 Final User and Community Models
 SPICE GA 870811 V1.0, 28/04/2022

31

Fortunato, S (2010). Community detection in graphs, Physics Reports, vol 486, Issues 3–5, 75-174, ISSN
0370-1573, https://doi.org/10.1016/j.physrep.2009.11.002.

Guo, F. Y., Shamdasani, S., Randall, B. (2011) Creating Effective Personas for Product Design: Insights from a
Case Study. International Conference on Internationalization, Design and Global Development. IDGD
2011: Internationalization, Design and Global Development pp 37-46. Lecture Notes in Computer
Science book series (LNCS, volume 6775) https://doi.org/10.1007/978-3-642-21660-2_5

Jorro, J. L., Caro-Martínez, M., Díaz-Agudo, B., Recio-García, J. A. (2020). A User-Centric Evaluation to
Generate Case-Based Explanations Using Formal Concept Analysis. In ICCBR 2020: Case-Based
Reasoning Research and Development pp 195-210 https://doi.org/10.1007/978-3-030-58342-2_13

Mohammad, S.F, Kiritchenko, S. (2018) WikiArt Emotions: An Annotated Dataset of Emotions Evoked by
Art. In Proceedings of the 11th Edition of the Language Resources and Evaluation Conference (LREC-
2018), Miyazaki, Japan. European Language Resources Association (ELRA)
https://aclanthology.org/L18-1197.

Plutchik, R. (2001). The nature of emotions: Human emotions have deep evolutionary roots, a fact that may
explain their complexity and provide tools for clinical practice. American scientist, 89(4), 344-350.

Xu, D., Tian, Y. A (2015) Comprehensive Survey of Clustering Algorithms. Ann. Data. Sci. 2, 165–193.
https://doi.org/10.1007/s40745-015-0040-1

Yang, Z., Algesheimer, R. & Tessone, C. A (2016). Comparative Analysis of Community Detection Algorithms
on Artificial Networks. Sci Rep 6, 30750 https://doi.org/10.1038/srep30750

https://doi.org/10.1016/j.physrep.2009.11.002
https://doi.org/10.1007/978-3-642-21660-2_5
https://doi.org/10.1007/978-3-030-58342-2_13
https://aclanthology.org/L18-1197
https://doi.org/10.1007/s40745-015-0040-1
https://doi.org/10.1038/srep30750

 D3.3 Final User and Community Models
 SPICE GA 870811 V1.0, 28/04/2022

32

Appendix
1. User Model File Structure
The structure of the file system is:

/usermodel
/usermodel/src/main/java

il.ac.haifa.is.spice
il.ac.haifa.is.spice.controller
il.ac.haifa.is.spice.exception
il.ac.haifa.is.spice.model
il.ac.haifa.is.spice.repository
il.ac.haifa.is.spice.security

/usermodel/src/main/resources
/usermodel/src/main/resources/application.properties

/usermodel/src/test/java
/usermodel/doc
/usermodel/react-frontend (example frontend)

/usermodel/react-frontend/build
/usermodel/react-frontend/node_modules
/usermodel/react-frontend/public
/usermodel/react-frontend/src
/usermodel/react-frontend/src/components
/usermodel/react-frontend/src/services
/usermodel/react-frontend/src/App.css
/usermodel/react-frontend/src/App.js
/usermodel/react-frontend/src/App.test.js
/usermodel/react-frontend/src/index.css
/usermodel/react-frontend/src/index.js
/usermodel/react-frontend/src/logo.svg
/usermodel/react-frontend/src/reportWebVitals.js
/usermodel/react-frontend/src/setupTests.js
/usermodel/react-frontend/debug.log
/usermodel/react-frontend/package-lock.json
/usermodel/react-frontend/package.json
/usermodel/react-frontend/README.md
/usermodel/src

/usermodel/target
/usermodel/HELP.md
/usermodel/mvnw
/usermodel/mvnw.cmd
/usermodel/pom.xml
/usermodel/usermodel-api-docs.json

 D3.3 Final User and Community Models
 SPICE GA 870811 V1.0, 28/04/2022

33

1. SPICE-UserModel-API REST
See Deliverable D6.4

1. Screenshots

List of different properties in the configurations (From choice 1 in First screen)

An example of all user properties with name of Age from previous screen View All

 D3.3 Final User and Community Models
 SPICE GA 870811 V1.0, 28/04/2022

34

List of all users from first screen option 2

View values for a particular user from previous screen

1. React example of wrapped REST calls

1.4.1.1. User Service
import axios from 'axios';

const PROPERTY_API_BASE_URL = "https://hspice.haifa.ac.il/usermodel/api/v2/property";
//const PROPERTY_API_BASE_URL = "http://localhost:8080/api/v2/property";

class PropertyService {

 getPropertysByUserid(userid){
 return axios.get(PROPERTY_API_BASE_URL+'GetAllByUserid/'+userid);
 }

 getPropertysByName(pname){
 return axios.get(PROPERTY_API_BASE_URL+'GetAllByPname/'+pname);
 }
 createProperty(property, userid){
 return axios.post(PROPERTY_API_BASE_URL+'Create/'+userid, property);

 D3.3 Final User and Community Models
 SPICE GA 870811 V1.0, 28/04/2022

35

 }

 getPropertyById(propertyName, userid){
 return axios.get(PROPERTY_API_BASE_URL+'Get/' + userid+'/'+propertyName);
 }

 updateProperty(property, userid){
 return axios.put(PROPERTY_API_BASE_URL +'Update/' + userid, property);
 }

 deleteProperty(userid, propertyName){
 return axios.delete(PROPERTY_API_BASE_URL+'Delete/' + userid+'/'+propertyName);
 }

}

export default new UserService()

1.4.1.2. Property Service
import axios from 'axios';
const PROPERTY_API_BASE_URL = "http://localhost:8080/api/v2/property";
class PropertyService {
 getPropertysByUserid(userid){
 return axios.get(PROPERTY_API_BASE_URL+'GetAllByUserid/'+userid);
 }
 getPropertysByName(pname){
 return axios.get(PROPERTY_API_BASE_URL+'GetAllByPname/'+pname);
 }
 createProperty(property, userid){
 return axios.post(PROPERTY_API_BASE_URL+'Create/'+userid, property);
 }
 getPropertyById(propertyName, userid){
 return axios.get(PROPERTY_API_BASE_URL+'Get/' + userid+'/'+propertyName);
 }
 updateProperty(property, userid){
 return axios.put(PROPERTY_API_BASE_URL +'Update/' + userid, property);
 }

 deleteProperty(userid, propertyName){
 return axios.delete(PROPERTY_API_BASE_URL+'Delete/' + userid+'/'+propertyName);
 }

}
export default new PropertyService()

1.4.1.3. User Generated Content Service

import axios from 'axios';

const UGC_API_BASE_URL = "https://hspice.haifa.ac.il/usermodel/api/v2/ugc";
const UGC_API_BASE_URL2 = "https://hspice.haifa.ac.il/usermodel/api/v2/UserGeneratedContent";
//const UGC_API_BASE_URL = "http://localhost:8080/api/v2/ugc";

http://localhost:8080/api/v2/property

 D3.3 Final User and Community Models
 SPICE GA 870811 V1.0, 28/04/2022

36

class UGCService {

 getAllUserGeneratedContent(){
 return axios.get(UGC_API_BASE_URL2);
 }

 createUserGeneratedContent(ugc, userid){
 return axios.post(UGC_API_BASE_URL+'Create/'+userid, ugc);
 }

 createUserGeneratedContent2(ugc, userid){
 return axios.post(UGC_API_BASE_URL+'CreateMany/'+userid, ugc);
 }

 getUserGeneratedContentByUseridandName(ugcName, userid){
 return axios.get(UGC_API_BASE_URL +'GetByUseridAndName/' + userid+"/"+ugcName);
 }

 getUserGeneratedContentByUserid(userid){
 return axios.get(UGC_API_BASE_URL +'GetAllByUserid/' + userid);
 }

}

export default new UGCService()

1.4.1.4. User History Service

import axios from 'axios';

const UHISTORY_API_BASE_URL = "https://hspice.haifa.ac.il/usermodel/api/v2/uhistory";
//const UHISTORY_API_BASE_URL = "http://localhost:8080/api/v2/uhistory";

class UHistoryService {

 getUHistorysAll() {
 return axios.get(UHISTORY_API_BASE_URL);
 }

 getUHistorysByUserid(userid){
 return axios.get(UHISTORY_API_BASE_URL+'GetAllByUserid/'+userid);
 }

 getUHistorysByName(pname){
 return axios.get(UHISTORY_API_BASE_URL+'GetAllByPname/'+pname);
 }

 createUHistory(property, userid){
 return axios.post(UHISTORY_API_BASE_URL+'Create/'+userid, property);
 }
 createUHistoryMany(propertys, userid){
 return axios.post(UHISTORY_API_BASE_URL+'CreateMany/'+userid, propertys);

 D3.3 Final User and Community Models
 SPICE GA 870811 V1.0, 28/04/2022

37

 }

	1. Introduction
	2. User Model
	2.1 Motivation and justification
	2.2 General Structure
	2.3 Accessing the User Model
	2.4 Example of Use

	3. Community Model
	3.1. Review of main definitions
	3.2 Data inputs for the Community model
	3.3 Community model relationships for reflection processes
	3.4 Community model API
	3.5 Explanations and visualisation of the Community model

	4. Interaction within Work Package 3
	5. Interaction (of the UM and CM) with other Work Packages
	6. Interaction with case studies
	7. Conclusions and future work
	8. Instructions (locations of material)
	9. References
	a. User Model
	b. Community Model
	Appendix
	1. User Model File Structure
	1. SPICE-UserModel-API REST
	1. Screenshots
	1. React example of wrapped REST calls
	1.4.1.1. User Service
	1.4.1.2. Property Service
	1.4.1.3. User Generated Content Service
	1.4.1.4. User History Service

