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Executive summary   
This document reviews the state of the art on community detection algorithms, emphasizing the importance 
of similarity assessment processes.  After reviewing the similarity measures as essential tools to solve the 
problem of community detection, we describe our experiments with community detection methods with 
different test domains. We include experiments with synthetic data, and with some of the preliminary data 
from the SPICE case studies. The community model distinguishes between pre-existing interest groups, or 
explicit communities, and implicit hidden communities that are detected using community detection 
algorithms on the information of the user model and the analysis of the individual user interpretations (pre-
processed by semantic textual analysis).  This document also reviews the advances on visualization and 
explanation of the community model and how it serves to analyze the strength of social connections within 
a pre-existing group (explicit community), and to support social cohesion across groups, providing 
understanding of their differences and recognizing what they have in common.  
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Introduction 
The general aim of the SPICE project is to build social cohesion, both between and within citizen groups, by 
developing tools and methods to support citizen curation. We define citizen curation as a process in which 
cultural objects are used by citizens as a resource to develop their own personal interpretations. These 
interpretations are then shared and used within and across groups to reflect on similarities and differences 
in perspective. Additionally, citizens can use their interpretations to build representations of themselves and 
consider their perspective on culture shared with others.  

For each case study, the first steps have been the formalization of the user and community models (D3.1, 
D3.3) that include a set of pre-existing interest groups or explicit communities (students from a certain 
school, teachers, members of an association, older people, asylum seekers, children with serious illnesses, 
children from lower socioeconomic groups, deaf people, and children from different religious and secular 
communities). In this context, individual user interpretations (pre-processed by semantic textual analysis, see 
details in deliverable D3.2) are used to analyze the strength of social connections within a pre-existing group 
(explicit community), to detect hidden (implicit) communities and to support social cohesion across groups, 
by both promoting tolerance and understanding of their differences and recognizing what they have in 
common.  

Our goal is to find scrutable models to promote reflection about contents, show differences within groups 
(both explicit and implicit) to tackle preconceptions of homogeneity based on the pre-existing explicit 
communities; and show similarity between groups to tackle preconceptions of heterogeneity. The resulting 
community model will support the recommender system that won’t be oriented to the typically popular 
contents or based on providing “more of the same” similar contents to the users (the so called, filter bubble). 
Instead, community model will support variety and serendipity to the recommendation results.  

The input for the processes of the community model is the user model, the content model, and the semantic 
analysis of user interpretations.  Community detection algorithms analyze 2 types of user attributes:  

• Personal attributes ( general personal and demographic info).  
• Interaction attributes resulting from analysis of interpretations, or user generated content. 

The community model keeps the list of implicit and explicit communities and enables visualization and 
explanation processes.  

Figure 1 summarizes the processes of inter-group similarity, similarity computation (intra group and inter 
group similarities) based on semantic models (wikidata and WP6 ontologies) and community detection and 
explanation algorithms (clustering or graph analysis).   
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Figure 1: Process for community detection and explanation using FCA (formal concept analysis).  

Note that in the processes above we have used visualization and configuration interfaces that are prototypes 
and are not intended to be the final interfaces.   

This deliverable describes algorithms to detect, visualize and explain implicit communities. Membership of 
users to explicit communities would be asserted directly (and not inferred) and this is useful information in 
the analysis of preconceptions of homogeneity of opinions inside explicit communities.   

Note that there is no clustering algorithm that can be universally used for every type of dataset and there is 
no similarity measure that can be used by every clustering algorithm on every dataset. Parameter settings 
are crucial in the performance of a clustering algorithm and similarity configuration (user-user, item-item) 
affects the results.  Good data visualizations help users analyze, validate and explain the clusters generated 
by the algorithms. 

In this document we first review the state of the art on community detection algorithms, emphasizing the 
importance of semantic similarity metrics in these processes. After reviewing the similarity measures as 
essential tools to solve the problem of community detection, we describe our experiments with community 
detection methods with different test domains. We include experiments with synthetic data, and some of 
the preliminary data from the SPICE case studies. 

State of the art of community detection algorithms 
In this document we will review a wide spectrum of community detection methods based on two approaches: 

1. Clustering algorithms based on similarity functions, considering data points as user information that 
comprises not only demographics but also user interactions (see Deliverable D3.3 “Final User and Community 
Models” for more information about the input data in the community model). 

2. Clustering algorithms based on graph analysis, considering the user set as a networked graph where users 
are nodes, links represent the existence of similarity relations between users, and the graph analysis 
algorithms detect compartments with high density links or subgraphs. 

Mostly the clustering algorithms to implement the community detection processes was publicly available in 
machine learning libraries; we have experimented with different configurations and parametrizations in the 
community detection use case. . Obviously, we could not by any means perform an analysis of all existing 
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techniques, as their number is huge, but we have reviewed a good representation of them  that are the most 
relevant for our application scenarios.   

Clustering algorithms based on similarity functions 
Clustering algorithms are non-supervised learning methods to separate the data points contained in a dataset 
into groups (or clusters) in a way that the similarity between the data points in the same group is maximized 
(internal homogeneity) while the similarity between data points in different groups is minimized (separation) 
[49]. This way, similar data points are in the same cluster while the clusters themselves are dissimilar among 
them. Partitioning the dataset into clusters requires in most cases the use of similarity measures (see section 
Discussion 

After the study of different clustering methods, it is worth noting that there is no clustering algorithm that 
can be universally used for every type of dataset. Additionally, for those clustering methods that use similarity 
metrics, each dataset needs a study beforehand the selection of the similarity metrics employed because 
there is no similarity measure that can be used by every clustering algorithm on every dataset. 

Parameter settings are crucial in the performance of a clustering algorithm. And some of them require the 
number of initial clusters as input. Some techniques are employed to define the potential number of these 
clusters. Additionally, feature selection and extraction are important steps for achieving a good performance 
in the clustering algorithms. 

According to algorithm performance, we want to highlight that every algorithm has its own computational 
complexity, so it is important to take this into account when choosing a concrete algorithm. This is especially 
important for clustering algorithms in graph analysis because their complexity is high and depends on the 
number of nodes or even the edge density. It is also important to note that some clustering algorithms have 
the capability to rearrange clusters when new data points are added to the dataset without running the 
algorithm from scratch. 

Finally, good data visualizations help users analyze, validate, and explain the clusters generated by the 
algorithms. 

Similarity Measures). 

When using a clustering algorithm, we must always follow the following process [76,77]: 

1. Feature selection and extraction: it consists of choosing the set of features from the data points 
employed by the clustering algorithm. New features can also be derived by transforming and combining 
the original ones. 

2. Clustering algorithm selection or design: it consists of choosing the most suitable algorithm according to 
the features selected in the previous step. This step also implies the definition of the similarity measures 
and other criterion functions that the algorithm employs.  

3. Evaluation: it consists of the validation of the clustering results, using evaluation metrics. These metrics 
can be employed to compare results from different algorithms or to tune the input parameters of an 
algorithm.  

4. Explanation: it consists of generating a meaningful interpretation of the clusters created by the 
algorithm. 

This is not a one-shot process because evaluation and explanation results can trigger new trials and 
repetitions to find the most suitable partitions [77]. 

Factors for choosing a clustering algorithm 

According to [25,49], several factors influence the selection of the clustering algorithm: 

• The domain where the algorithm is applied. 
• The size and sparsity of the dataset. 
• The dimensionality of the dataset, i.e., the number of features for each data point. 
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• The type of features employed to describe the data points in the dataset. 
• The correlation among these data features. 
• How the algorithm deals with outliers and noisy data. 
• The time complexity of the algorithm. 
• The stability of the algorithm or, in other words, if the algorithm generates the same clusters despite the 

order in which the data points are provided to the algorithm. 
• The use of different similarity measures. 

Classification of clustering algorithms 

According to [25,49] clustering algorithms can be classified in the following categories: 

• Partition-based clustering. 
• Hierarchical Clustering. 
• Density-based clustering. 
• Grid-based clustering. 
• Model-based clustering. 

The survey detailed in [76] adds some additional categories that we consider also interesting for our state-
of-art review: 

• Fuzzy-based clustering. 
• Graph-theory-based clustering: these algorithms will be discussed in our section related to Clustering 

algorithms based on graph analysis. 
• Ensemble-based clustering. 

This categorization includes clustering algorithms for specific kinds of data such as data streams, spatial data, 
or large-scale datasets (Big Data). Additionally, there are categories for algorithms based on kernels, fractal 
theory, distribution, swarm intelligence, quantum theory, affinity propagation or spectral graph theory. 
These categories are very specific and some of the algorithms included here can also be classified in any of 
the categories previously enumerated. 

Partition-based clustering 

These methods classify the data points into k clusters, where all clusters are not empty, relocating the center 
of each cluster iteratively until an objective function based in inter and intra cluster similarity is satisfied. 

K-means [48] is the best-known partition-based clustering algorithm. Initially, it randomly selects k points as 
the center of the clusters and assigns each point to the nearest cluster. This process is repeated iteratively 
until a convergence criterion is satisfied. The center of the resulting clusters can be a non-existing data point. 
The algorithm heavily depends on the number of clusters and the initial centers randomly chosen. Some 
algorithms, like ISODATA [6], estimate the initial value of k. Additionally, the algorithm is sensitive to noise 
and outliers. FCM (Fuzzy C-Means) clustering is a fuzzy version of k-means. Fuzzy clustering is also referred 
to as soft clustering and its first version was proposed by J.C. Dunn in 1973.  It is a form of clustering in which 
each data point can belong to more than one cluster. 

k-medioids [59] is a variation of the k-means algorithm where the center of a cluster is represented by the 
nearest data points to the real center. For this reason, it is more robust to noise and outliers. PAM, CLARA 
and CLARANS are algorithms based on k-medoids. PAM (Partitioning Around Medoids) [42] tries to minimize 
the average dissimilarity of data points to their closest cluster medoids (or points that represent the center 
of the cluster) using a greedy algorithm. CLARA (CLustering Large Applications) [42,66] uses a sampling 
approach to select the medoids and uses PAM algorithm internally. CLARANS [56,66] is also based on k-
medoids to identify spatial structures present in the dataset. 

k-modes [37] enhances k-means algorithm using it with data points that combine numerical and categorical 
features, replacing the means of clusters with modes and a frequency-based method. 
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Partition-based algorithms are, in general, simple, and efficient and they have a low time complexity. 
However, they can be drawn in a local optimal solution due to their sensitivity to the initial preset of clusters 
and centroids.  

Hierarchical Clustering 

These clustering methods create a hierarchy of the data points in the dataset. The result of this type of 
algorithms is a tree-like structure called dendogram, where the data points are represented by leaf nodes. 
Different sets of clusters are extracted from this structure, depending on the depth level where the 
dendogram is cut. 

Hierarchical methods can be: 

• Agglomerative: These methods start with one cluster per data point, and they iteratively merge two or 
more clusters until a termination condition is satisfied. These methods are also known as bottom-up. 

• Divisive: These methods start with one cluster (the whole dataset), and they iteratively split the clusters 
until a stopping criterion is reached. These methods are also known as top-down. 

Agglomerative algorithms need to estimate the similarity between clusters to choose the clusters that will 
be merged on each iteration. The main inter-cluster similarity measures, also known as linkages, are the 
following: 

• Single linkage: Cluster similarity is computed as the distance between the closest pair of data points in 
target clusters. 

• Complete linkage: Cluster similarity is computed as the distance between the farthest pair of data points 
in target clusters. 

• Average linkage: Cluster similarity is computed as the average distance between the data points in both 
clusters. 

Most hierarchical clustering algorithms follow an agglomerative approach. For example, BIRCH (Balanced 
Iterative Reducing and Clustering using Hierarchies) [82] is an agglomerative algorithm that creates a 
clustering feature tree in an incremental and dynamic way, so it performs well with large datasets. However, 
it is sensitive to the order of the data points and does not work well if clusters are not spherical. CURE 
(Clustering Using REpresentatives) [32] is another agglomerative algorithm, robust to outliers, that identifies 
clusters having non-spherical shapes and wide variances in size in large datasets employing a combination of 
random sampling and partitioning. ROCK (RObust Clustering using linKs) [33] is an agglomerative algorithm 
that deals with data with Boolean and categorical attributes using the concept of links and common 
neighbors, so it can also be considered as a graph theory-based algorithm. The same consideration occurs 
with CHAMELEON [41], which uses a graph partition clustering algorithm and the interconnectivity and 
closeness to build the clusters. 

Divisive algorithms are not commonly used due to their complexity. DIANA (DIvisive ANAlysis Clustering) and 
MONA (MONothetic Analysis) [42] are the only divisive hierarchical clustering algorithms found in literature. 
These algorithms perform well with arbitrary shapes and data types. Additionally, they normally show high 
stability and the relationships among clusters can be extracted by analyzing the dendogram. However, it is 
necessary to preset the number of clusters and some of them suffer from high time complexity. 

Density-based clustering 

Density-based algorithms split the dataset into regions of high density that contain the data points that 
belong to this cluster. These algorithms can discover clusters of arbitrary shapes and they are robust to 
outliers. 

DBSCAN (Density-Based Spatial Clustering of Applications with Noise) [24] is one of the most popular density-
based clustering algorithms. It was designed to discover clusters of arbitrary shapes. The main idea is the 
neighborhood of a datapoint that belongs to a cluster contains a minimum number of points or density. The 
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algorithm distinguishes between core points and border points because the minimum number of points will 
be different in both cases.  

OPTICS (Ordering Points to Identify the Clustering Structure) [3] produces a density-based clustering 
ordering, that can be represented by a reachability plot. Then, a hierarchical cluster structure can be 
generated using this ordering. 

DENCLUE (DENsity-based CLUstEring) [36,38] is another density-based clustering algorithm modeling density 
as the influence a datapoint has within its neighborhood. Clusters can be determined mathematically by 
identifying density attractors. Evaluation results reveal that it generates good clusters even in data sets with 
large amounts of noise and it works faster than DBSCAN. 

Mean-shift [19] analyzes feature spaces derived from real data, where the number of clusters is not known 
and each cluster has its own shape. It employs a mean shift procedure to detect modes in the feature space 
and delineate clusters based on the location of these modes. It is employed in image segmentation, to find 
clusters of pixels with similar colors. 

These algorithms are suitable for arbitrary shapes but most of these algorithms are sensitive to the input 
parameters. Additionally, the cluster quality is reduced when the density space is not even. 

Grid-based clustering 

These algorithms modify the original dataset and transform it into a grid structure of fixed size to reduce the 
processing time. Grid-based algorithm complexity is independent from the number of data points, and it is 
determined by the number of cells in the grid structure, instead. Some of these algorithms are considered 
both density-based and grid-based clustering algorithms. 

STING (a Statistical Information Grid approach) [72] creates a spatial grid with a hierarchical structure of cells. 
It explores statistical information stored in grid cells. Each level in the hierarchy corresponds to a different 
resolution so the statistical information of cells in higher levels can be computed as an aggregation of the 
statistical information of the cells in a lower level. Its complexity depends on the number of cells on the 
lowest level and authors highlight that this algorithm outperforms others like DBSCAN while maintaining a 
similar quality of the discovered clusters. 

Wave Cluster [67] is another grid-based algorithm that considers the multidimensional spatial data as a 
multidimensional signal and it uses a wavelet transform method, a signal processing technique that 
decomposes a signal into different frequency sub-band, to convert the spatial data into the frequency 
domain. It does not assume a specific shape for the clusters, and it is not affected by outliers, and it expects 
an estimation of the number of clusters. It outperforms other density-based algorithms with similar cluster 
qualities. 

CLIQUE (CLustering In QUEst) [1] is another algorithm based on automatically identifying the subspaces of 
high dimensional data that allow better clustering than original space. It partitions each dimension in the 
original data space into non overlapping rectangular cells and a cluster is defined as the maximal set of 
connected dense cells. Due to its simplicity, it runs faster than other algorithms, but it shows some problems 
with the quality of the clusters discovered. 

In general, these algorithms are faster and have a high scalability, and they are suitable for parallel 
processing. However, they are sensitive to cell size and structure, and they have problems of accuracy and 
low quality of clusters. 

Model-based clustering 

These algorithms assume that each cluster in the dataset can be modeled by a mathematical model, so the 
algorithm looks for the model that best fits the dataset. There are two main approaches: based on statistical 
learning and based on neural networks. 

COBWEB [26] is an example of model-based algorithm based on statistical learning. It creates a classification 
tree based on an incremental method for concept learning. This tree can be interpreted as a hierarchical 
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clustering structure, where nodes represent concepts using a statistical description. Its main drawback is its 
complexity and the assumption that the attributes are independent. However, this algorithm has been 
extended by others like CLASSIT [28], for continuous data, or AutoClass [15], which uses Bayesian statistical 
analysis to estimate the number of clusters. 

EM (Expectation-Maximization) methods are also employed as model-based algorithm based on statistical 
learning. EM iteratively refines the maximum likelihood parameter estimation by calculating the expectation 
while keeping a set of fixed parameters. EM is employed in MCLUST [61], a software package for software 
clustering in FORTRAN for parameterized gaussian mixture models, and the performance of different 
variations of this algorithm are compared in [50]. 

SOM (Kohonen's Self-Organizing Map) [45] is one of the most popular clustering algorithms based on neural 
networks. It learns patterns in data by adjusting their interconnection weights to best fit the data. Other 
works, like the Clusot algorithm [14], use SOM and alleviate its inherent interpretation problem for nonexpert 
users. 

Model-based clustering algorithms can describe more specifically the data in some concrete areas, providing 
a significant advantage over other clustering algorithms. However, generally, model-based algorithms suffer 
from high complexity. Additionally, the premise cannot be correct for certain datasets, and they are sensitive 
to model parameters. 

Fuzzy-based clustering 

All the algorithms described up to now classify each data point in a cluster. However, fuzzy clusters allow a 
degree of membership to different clusters for each datapoint [79]. The most popular algorithm of this family 
is Fuzzy C-Means (FCM), based on k-means [10]. As a partition-based algorithm, it iteratively looks for the 
center of each cluster but, instead of classifying a datapoint strictly to a cluster, it assigns a value ranging 
between 0 and 1 to measure the likelihood to belong to a cluster. Fuzzy C-Shells (FCS) [20], or the 
approximation of cluster centers using mountain methods [78] are other examples of this family of clustering 
methods 

The main advantage of these algorithms is that it is more reasonable to classify a datapoint to different 
clusters than to a unique group, so they obtain a relatively high accuracy. However, they inherit the problems 
of the partition-based algorithms, like the sensitivity to initial parameters and the need of presetting the 
number of clusters.  

Ensemble-based clustering 

This type of technique is based on aggregating the results generated by of a set of clustering algorithms [71]. 
This set can be a combination of different clustering algorithms, the same algorithm with different 
parameters or initial conditions, different representations of the data points, different subsets of data points 
or executions using different feature spaces. The function that combines the results is known as consensus 
function and it is responsible for improving the results of the individual clustering algorithms. The surveys in 
[71,76] contain a classification and a catalog of several consensus functions. 

These algorithms are scalable, and the execution of different algorithms can be done in parallel. Additionally, 
the ensemble benefits from the strengths of the algorithms employed. However, the main problem of this 
type of methods relies on the definition of the consensus function and on the selection of the initial clustering 
methods. If they are not carefully selected, the results provided by each one can be incompatible and should 
not be combined by the consensus function. 

Evaluating clustering algorithms 

To test the quality of the clustering algorithms we can use different metrics. These evaluation metrics can be 
categorized into two groups based on the information contained in the dataset: internal and external indices 
[25,49,76]. 
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Internal indices evaluate the goodness of a clustering algorithm in terms of the features known from the 
dataset. These assessment indices are applicable in the algorithms that use the concept of centroid. Some of 
these metrics are the following:  

• Compactness measures the average distance between data points in the same cluster with respect to the 
centroids. Good clustering algorithms will create clusters with high compactness. 

• Separation measures the distance between different clusters computing the distance between centroids. 
Good clustering algorithms will create clusters with high separation. 

• Davies-Bouldin Index measures the overlap between clusters. If this index is close to 0 then the clusters 
are separated and compact. 

• Dunn Validity Index combines separation and compactness. A large value of this index indicates that the 
clusters are compact and well separated. 

• Silhouette coefficient also computes a combination of the average distance between a data point and 
other data points in the same cluster and average distance between nearest clusters to measure the 
goodness of the clustering algorithm. 

Additionally, clustering algorithms can be evaluated in terms of time complexity, especially when dealing with 
big amounts of data, and stability, that measures the variation of the outputs when running the algorithm 
more than one time. 

If the clusters are known, i.e. we have assigned the class labels in the dataset, we can assess the performance 
of a clustering algorithm using the same evaluation techniques employed in supervised learning, like 
Accuracy, Confusion Matrix, Precision, Recall and F-measures. However, there are specific measures, called 
external indices, for clustering algorithms: 

• Cluster accuracy is the percentage of data points in the correct cluster. 
• Rand Index and Adjusted Rand Index considers not only the data points in the correct cluster but also the 

data points that are classified in a different cluster by the algorithm. 
• Normalized Mutual information is based in information theory, and it computes the amount of 

information shared by two clusters. 
• Fowlkes–Mallow's index is based on the number of correct and incorrect data points classified by the 

clustering algorithm. It is computed as the geometric means of precision and recall. 

Clustering algorithms based on graph analysis 
This category refers to the algorithms that are applied to graphs, where nodes represent data points and 
edges represent relationships among data points. According to graph theory, communities or clusters are 
groups of nodes having similar properties, affiliations or roles that are different from other nodes in the 
network [27,39]. Therefore, community detection refers to the methods employed to identify these groups 
using the structural properties of the graph. 

Community detection algorithms are based on the concept that the number of edges among nodes inside 
the community is larger than the number of edges with nodes in the rest of the graph. For this reason, 
community detection algorithms are effective only if graphs are sparse, i.e., if the number of edges is of the 
order of the number of nodes of the graph [27]. 

Most of the algorithms proposed for community detection were designed to discover disjoint communities. 
However, during the last few years, the number of alternatives to discover overlapping communities has 
increased. 

Algorithms for disjoint communities 

These algorithms assign each node to a unique cluster. According to [39], these algorithms can be classified 
into the categories described in the following subsections. 
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Traditional algorithms 

Traditional algorithms were the early methods employed for community detection in graphs. These 
algorithms are categorized in the following techniques: 

• Graph partitioning: These algorithms split the nodes of a graph into a concrete number of groups, with 
a predefined size, in a way that the number of the edges among clusters is minimum. The Kernighan-Lin 
(KL) algorithm uses a heuristic approach that minimizes the difference between the intra-community and 
inter-community links [43]. Their main drawback is that the number and size of the clusters is needed 
beforehand. 

• Hierarchical graph clustering: Like in the hierarchical clustering algorithms described previously, these 
algorithms create a hierarchical structure (a dendogram) of the graph identifying groups of similar nodes. 
On one hand, agglomerative algorithms start with nodes in separate clusters, and they are combined 
iteratively according to a similarity score [68]. On the other hand, divisive algorithms start with all the 
nodes in one cluster that will be split iteratively removing edges that connect nodes with low similarity. 
One of the most important methods following this approach is the Girvan-Newman [53]. This method 
removes edges with the highest betweenness, those that connect nodes from different communities. 
Once the dendogram is created, a graph partition is selected using the split with highest modularity. 

• Partitional clustering: These algorithms split the network into a predefined number of K clusters using 
the distances among nodes [63]. The goal is to maximize/minimize a given function that uses that 
distance. Some examples of this distance function are: 

• Minimum k-clustering: It uses the diameter of a cluster, which is the largest distance between two 
points of a cluster. 

• k-clustering sum: It uses the average distance between all pairs of points of a cluster. 
• k-center: It computes the maximum distances of each cluster node from the centroid 
• k-median: It computes the average distance of each cluster in the node with the centroid. 

The main limitation of these algorithms is the specification of the number of clusters at the beginning. 

• Spectral clustering: These algorithms use the eigenvectors of a similarity matrix extracted from a graph. 
These eigenvectors reveal implicit properties hidden in the former matrix. The most common methods 
of this category are unnormalized spectral clustering with Laplacian matrix [60], normalized spectral 
clustering with symmetric Laplacian matrix [40] and normalized spectral clustering with a Laplacian 
matrix of random walks [55]. 

Modularity-based algorithms 

Many algorithms try to discover communities defining groups that maximize a defined quality function. The 
most popular function for assessing the quality of a group of nodes is modularity [54], which represents the 
actual density of edges in a cluster compared with the expected density in a random graph. 

Modularity optimization can be achieved using different alternatives like simulated annealing [47], extremal 
optimization [13], spectral optimization [16], or genetic algorithms [17], among others [27,39]. However, one 
of the most popular are greedy algorithms [18,53], like the Louvain Method [11]. This algorithm is simple and 
tries to maximize the modularity using an iterative process where nodes are aggregated in other communities 
if the modularity of the new community is enhanced. 

Dynamic algorithms 

These algorithms discover communities running processes on the graph. The most common types of 
processes employed are the following: 

• Spin models: these methods use the Potts model, that describes a system of spins in different states 
(nodes) and the interactions between them (nearest neighbors) [65]. 

• Random walks: these methods use random walkers to find communities, supposing that a random 
walker should spend more time inside a community due to the high density of internal edges. Random 
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walks are employed to define a distance measure, so close nodes are supposed to belong to the same 
community [83]. One of the most used algorithms of this kind is Markov Clustering Algorithm (MCL) [23], 
which simulates a flow diffusion method in a graph using random walks. 

• Synchronization: these methods suppose that nodes are oscillators and nodes in the same community 
will synchronize earlier [12]. These methods are not reliable when communities differ in size. 

Algorithms for overlapping communities 

These algorithms can classify a node in more than one group [74]. Some community detection algorithms 
that generate disjoint communities (described previously) have been adapted to detect overlapping 
communities, like CONGA (Cluster-Overlap Newman Girvan Algorithm) [30], which extends the Girvan-
Newman algorithm. However, there are also specific methods for finding overlapping communities, as we 
will see in the following subsections. 

Label propagation 

These methods define communities as groups of nodes that share the same label. The label of a node is 
defined using an iterative propagation process based on a neighbor majority voting, known as Label 
Propagation Algorithm (LPA) [62]. COPRA [31] and SLPA (Speaker-Listener Propagation Algorithm) [75] are 
well-known example of community detection method that employs the LPA. 

Clique Percolation Method 

It is based on the concept that the internal edges of a community are likely to form cliques due to their high 
density [58]. A k-clique is a complete graph or k nodes, where every node is linked with all the nodes in the 
graph. The k-cliques are translated over the graph to find new communities and adjacent cliques can share 
nodes. The algorithm has been extended to the analysis of weighted, directed and bipartite graphs and faster 
implementations have been developed [46]. Its main drawback is the need to predefine the k value for 
running the algorithms. 

Local expansion and optimization 

These methods are based on the maximization of a local function that promotes the quality of densely 
connected nodes. The work in [7] proposes this method, that uses Iterative Scan (IS) for greedy optimization, 
and Rank Removal (RaRe), for removing vertices with highest importance, determined by a centrality score 
like betweenness centrality or PageRank. 

Link partitioning 

Link partitioning-based methods identify overlapping community structures by partitioning links instead of 
nodes. They convert the original network into a line graph and then identify the non-overlapping link 
communities using disjoint community detection methods. When the final line graph is converted again in 
the original graph, nodes can belong to multiple communities. Link clustering (LC) [2] or map equation for 
link communities (MELC) [44] are examples of this kind of methods. 

Statistical inference-based methods 

These methods aim to deduce properties of a graph based in a model that assumes some connectivity 
patterns among nodes. Generative models based on Bayesian inference are an example of this kind of 
methods. Early works [35] chose as model the planted partitioning model, which supposes that the clusters 
have equal size, and a pair of vertices is connected with probability p if they belong to the same cluster. 
Further works employ different models, like the Dynamic Stochastic Block Model (DSBM) [80] or the Dynamic 
Bayesian Overlapping Community Detector (DBOCD) [29], among others. 

Other methods are based on stochastic block models. Block modeling is a common approach in social 
network analysis to decompose a graph in classes of nodes with common properties. In this way, a simpler 
description of the graph is attained. Structural equivalence organizes nodes in classes where the probability 
of an edge between a node with all other nodes of the graph are the same for nodes in the same class. The 
work in [64] describes the use of this model. 
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Nonnegative matrix factorization approaches. 

Nonnegative matrix factorization (NMF) is a recent approach for the discovery of structural properties of 
graphs with overlapping communities. NMF improves interpretability in spectral methods that use 
eigenvalues, whose meaning is hard to explain. Some variants of this approach are described in [39]. 

Fuzzy methods 

Fuzzy community detection algorithms assign each node a soft membership factor vector to communities. 
Zhang et al. [81] proposed an algorithm based on the spectral clustering framework that uses Fuzzy C-Means 
(FCM) to obtain a soft assignment of nodes to one of the parameter-specified k communities, The work in 
[52] uses simulated annealing for optimizing a function that employs node similarity and fuzzy memberships 
of nodes to communities. Other example of these kind of methods is the work in [73], which uses a disjoint 
community detection method with a local optimization for assigning community memberships to graphs. 

Discussion 
After the study of different clustering methods, it is worth noting that there is no clustering algorithm that 
can be universally used for every type of dataset. Additionally, for those clustering methods that use similarity 
metrics, each dataset needs a study beforehand the selection of the similarity metrics employed because 
there is no similarity measure that can be used by every clustering algorithm on every dataset. 

Parameter settings are crucial in the performance of a clustering algorithm. And some of them require the 
number of initial clusters as input. Some techniques are employed to define the potential number of these 
clusters. Additionally, feature selection and extraction are important steps for achieving a good performance 
in the clustering algorithms. 

According to algorithm performance, we want to highlight that every algorithm has its own computational 
complexity, so it is important to take this into account when choosing a concrete algorithm. This is especially 
important for clustering algorithms in graph analysis because their complexity is high and depends on the 
number of nodes or even the edge density. It is also important to note that some clustering algorithms have 
the capability to rearrange clusters when new data points are added to the dataset without running the 
algorithm from scratch. 

Finally, good data visualizations help users analyze, validate, and explain the clusters generated by the 
algorithms. 

Similarity Measures   
Similarity and its complementary notion of distance are essential to solve a broad range of AI domains and 
applications, including the problem of community detection, since they can serve as an organizing principle 
by which individuals classify objects, form concepts, and generalize. 

From a general perspective, similarity between a pair of objects would be typically computed using 
description features by attribute-value pairs. These features can be simple, textual or, in some applications, 
it may be necessary to use derived features obtained by inference based on domain knowledge. In yet other 
applications, objects are represented by complex structures (such as graphs or first-order terms) and require 
an assessment of their structural similarity. Community detection relies heavily on the definition and use of 
semantic similarity measures over complex graph structures representing citizens, opinions, artworks, 
contributions, reflections, and emotions. 

In the SPICE project we have defined similarity measures between users and items based on different types 
of attributes (see also Deliverable D3.3: “Final User and Community Model”): 

• From the user model  

• Personal features (or attributes): according to Deliverable Document D3.3 “Final User and 
Community Models”, user models represent the individuals that are interacting with the system. 
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Users are described using different types of attributes (demographic, cultural, skills...) contained in 
the user model. For example, User1 (age 22) (nation Italy) (religion Catholic).  

• Interaction attributes: Content/emotions analysis module (D3.2 “Semantic annotation of social 
curatorial products”) generates information about user interests based on emotions, sentiment, 
attitudes, and others (see also D6.3). This information is stored in the user model as user generated 
content as users interact with items generating their own content (reflection, opinion, 
interpretations, comments, reaction to opinions…). Interaction attributes link users and items. These 
interactions can be represented as a tuple (user, item, interaction value), where the interaction value 
can be an emotion, a positive-negative rating, a conceptual value, etc. For example, (user1 likes Item1; 
user1 hates Item1; Item1 evokes fear on user1...). Note that users can generate content about 
subjects (or beliefs) that are related to a museum activity instead of a specific item from the content 
model. We consider this also as interaction attributes, represented as a tuple (user, activity-concept, 
interaction value) and stored in the user model.  For example, in MNCN, (user1 climate-change fear). 

• From the content model.  

• Museums store collections of items or organize activities with associated subjects (e.g., sustainability). 
According to Deliverable Document D4.1 “Distributed Linked Data Infrastructure”, the linked data 
infrastructure supports the storage of museum collections using the SPICE Ontology Network (cf. D6.2 
and D6.5). Similarity between items is important as it contributes to the user similarity. For example, 
user1 and user2 are similar due to their personal attributes, but also because user1 has positive rating 
(polarity/emotion) with item1, user2 has positive rating with item2 and item1 and item2 are similar 
(using an item-item similarity measure). 

Related work about Similarity 

From psychology [22], we have different theoretical approaches to similarity: Common element approach, 
Template models, Geometric models, Feature models and Geon theory, among others. Most of the typical 
similarity measures used in computer science refer to geometric and feature models.  

The geometric approach stresses the representation of similarity relationships among the objects.  

Using a set of features, similarity is given by the distance between objects in this space; the closer two objects 
are, the more similar they are. This approach assumes (1) that objects can be represented by values on a few 
continuous dimensions (features) and (2) that similarity can be represented by distance in a coordinate space. 
Common element approach computes similarity using only the proportion of common elements. The well-
known Tversky's “Contrast Model” (1977) [70] systematizes this feature-based approach highlighting the fact 
that similarity depends not only on the proportion of features common to the two objects but also on their 
unique features. In AI the notion of similarity, or distance, between objects described by attributes, has long 
been used in many contexts. Different similarity measures have a performance strongly related to the type 
of the features (or attributes) representing the compared objects and to the importance of each attribute. 
Thus, it is very different to deal with only continuous data, with ordered discrete data or non-ordered discrete 
data. Besides we can distinguish between surface and structural similarity.  

While distance functions for propositional (i.e., feature-vector) representations have been thoroughly 
studied in the past, work on distance functions for structured representations has been carried out in 
different communities such as graph matching, inductive logic programming, case-based reasoning, 
relational learning, or graph mining and is much less understood. Specifically, a significant amount of work 
that requires the use of a distance or similarity function for structured representations of data usually 
employs ad-hoc functions for specific applications [57]. 

When we need to compare object-oriented structured representations, similarity assessment should allow 
us to compare two differently structured objects. The structure of an object could be described by an object 
class that defines the set of attributes (also called slots) together with a type (set of possible values or sub-
objects) for each attribute. Object classes are arranged in a hierarchy of classes, that is, usually a n-ary tree 
in which sub-classes inherit attributes as well as their definition from the parent class (predecessor). 
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Moreover, we distinguish between simple attributes, which have a simple type like Integer or Symbol, and 
so-called relational attributes. There are some standard measures to compare simple values like numeric, 
strings or symbols (see next section). Relational attributes hold complete objects of some (arbitrary) class 
from the class hierarchy. They represent a directed binary relation, e.g., a part-of relation, between the object 
that defines the relational attribute and the object to which it refers. Relational attributes are used to 
represent complex case structures. The ability to relate an object to another object of an arbitrary class (or 
an arbitrary sub-class from a specified parent class) enables the representation of cases with different 
structures in an appropriate way. Similarity measures for such object-oriented representations are often 
defined by the following general scheme [9]: The goal is to determine the similarity between two objects. 
The object similarity is determined recursively in a bottom-up fashion, i.e., for each simple attribute (for 
example, age), a local similarity measure determines the similarity between the two attribute values (18 and 
34), and for each relational slot an object similarity measure recursively compares the two related sub-
objects. Then the similarity values from the local similarity measures and the object similarity measures, 
respectively, are aggregated (e.g., by a weighted sum) to the object similarity between the objects being 
compared (see Figure 2). 

When dealing with conceptual background domain models, like graphs, networks or taxonomies, another 
possibility is the representational approach that assigns similarity meaning to the path joining two 
individuals. In general, a graph-based semantic similarity measure is a mathematical tool used to estimate 
the strength of the semantic interaction between entities (concepts or instances) based on the analysis of 
ontologies [34]. Similarity is computed for a given pair of individuals. An individual is defined in terms of the 
concepts of which is an instance and the properties asserted for it, which are represented as relations 
connecting the individual to other individuals or primitive values (fillers). Note that the application of this 
measure is strongly dependent on the availability of an ontology or conceptual model that represents the 
application domain. For comparing ontological entities, graph-based measures are classified into two basic 
approaches: path-based, which compare the concepts according to properties of paths in graphs, and node-
based, that use properties of concepts in the ontology graph for comparing concepts. In path-based 
approaches, concepts are compared according to properties of paths in graphs. The most common property 
is the shortest path that connects nodes in an ontology (or concept taxonomy). The shorter the path is, the 
higher the similarity is. The path-based approaches suffer from a significant drawback: they typically consider 
all edges equivalent, indicating a uniform distance. Concerning the node-based approaches, they use 
properties of concepts in the ontology graph for comparing concepts.  We cite some of the most well-known 
measures, which are based on the lowest common subsumer (LCS) property: Armengol and Plaza’s [5], 
Bergmann [8], Resnik’s [10] and Lin’s [11] measures. The main limitation is that they are applicable only on 
taxonomies.  The work in [57] classifies the distance and similarity functions on graph-based representations 
in four types: (1) graph matching, (2) based on edit distances, (3) based on the types of relationships and 
refinement operators and (4) based on kernels. Two main categories of graph-based semantic measures are 
distinguished: (1) similarity measures adapted to taxonomies and (2) relatedness measures adapted to 
semantic graphs composed of different types of relationships [34] [4]. 

Next section describes what is the use of similarity in the SPICE project.  

Similarity computation for SPICE community model 
In SPICE we have designed community detection algorithms that rely on assessing similarity between users 
(user-user). Similarity between users is computed combining similarity between users’ attributes from the 
user model (personal and interaction attributes). Similarity between two users is defined as a linear 
combination of the local similarity values results between the user personal attributes UserAtri (Errore. 
L'origine riferimento non è stata trovata.).  
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Figure 2 Content similarity as a linear combination of local similarity values 

Note that the set of attributes describing user1 and user2 could be different. This type of content similarity 
compares the common properties of the two objects. Besides, as we have the list of explicit communities for 
each user, and communities are organized in a taxonomy (see D6.5), we can combine content similarity with 
similarity by position.  

Personal attributes (UserAtr) belong to the user model (see D3.1 for more details on the user model).  

•  
Figure 3 Similarity using personal attributes 

Content similarity also considers interaction attributes atri, for example, user1 likes Item1; user1 hates Item1; 
Item1 evokes fear on user1.  In the following example, Ugo watches in the Prado the Francisco-Goya painting 
“saturn-devouring-one-of-his-children”.  He “likes” it and tags it with the comment “Scary!”. Another user, 
Anne, likes the painting “The 3rd of May” 1808 also from the same painter Goya.  Similarity between Anne 
and Ugo using interaction attributes will evaluate if they have similar interactions (same sentiment or 
emotion) on similar artworks (similarity item-item).  In this example they share similar emotion on similar 
artworks (both are Goya paintings). 

 

 

Figure 3 Similarity using interaction attributes 
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To compute similarity between items (item1-item2) we use the set of descriptive attributes (ItemAtr) (from 
the content model): author, size, colour, year, artistic movement, style (ARCO ontology WP6). For example, 
in the Figure 4 example, both artworks are compared using local comparison on their attribute’s values (see 
Figure 4). Note that some attributes (like the theme) are connected and reason with the ontology models 
described in WP6. Besides, we can combine content similarity for some of the attributes with the use of the 
similarity measure by position using the taxonomies (see D6.5) for others (like the theme or authors).  
 

 
Figure 4. Item-Item Similarity using content attributes 

Local Similarity functions 

For each application scenario, we would need to specify Local Similarity measures for each user attribute and 
item attribute. To do so, we use a catalog of local similarity measures defined in the attribute types used to 
compare values (numbers, strings, symbols) between attributes. For example, to compare the age, 
nationality, or colors. New local similarity measures can be defined when needed (see subsection Design of 
new similarity measures).  

For numeric-valued features, the local (feature-specific) similarity measure most often computes the 
complement of the absolute difference, normalised to [0,1] by dividing by the range of permissible values:  

 

𝑠𝑠𝑠𝑠𝑚𝑚𝑖𝑖(𝑥𝑥𝑖𝑖 , 𝑥𝑥𝑖𝑖′) = 1 −
|𝑥𝑥𝑖𝑖 − 𝑥𝑥𝑖𝑖′|

𝑚𝑚𝑚𝑚𝑥𝑥𝑖𝑖 − 𝑚𝑚𝑠𝑠𝑛𝑛𝑖𝑖
 

Local similarity measures can be simple or complex (graph or position based).  

For example, a simple local similarity measures to compare colors or countries would be the use of a similarity 
table like the one in Figure 5 or we can use the distance if they are in a taxonomy (see subsection similarity 
in ontologies). 

  red green cyan blue 

red 1.0 0.1 0.2 0.1 

green 0.1 1.0 0.8 0.1 

cyan 0.2 0.8 1.0 0.8 

blue 0.1 0.1 0.8 1.0 

Figure 5: An example of similarity table for colors 

When the values of a categorical feature have an ordering, it may be possible to assign integer codes to the 
values, thus turning the categorical feature into a numeric-valued feature (January=1, February=2). However, 
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this does assume that the similarity of two categorical values is proportional to the (complement of) the 
difference between their numeric codes. 

Global Similarity functions   

We use Euclidean distance and Manhattan distance as two instantiations of the Minkowski function: 

𝑆𝑆𝑆𝑆𝑆𝑆𝑀𝑀𝑖𝑖𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑖𝑖(𝐴𝐴,𝐵𝐵) =  
1
𝑝𝑝
��𝑤𝑤𝑖𝑖 · [𝑠𝑠𝑠𝑠𝑚𝑚𝑖𝑖(𝑚𝑚𝑖𝑖 ,𝑏𝑏𝑖𝑖)]𝑟𝑟
𝑝𝑝

𝑖𝑖=1

�

𝑟𝑟

 

 

Where wi is the weight or importance assigned to attribute i. We can suppose weights wi are established 
manually during the configuration process. In section Perception of similarity, we describe an approach to 
learn these weights.  

When r=1 we have Manhattan distance, when r=2 we have the Euclidean distance and when r=∞ it converges 
to the Chebyshev distance.  

SIMChebyshev (A, B) = maxi=1...n|ai − bi |). 

Also, when p = 1 (i.e., when comparing scalars), this similarity function corresponds to the absolute value of 
their difference.  

Another option is the use of the cosine similarity as a global similarity function that computes the cosine of 
the angle between two vectors (a1, a2,  … ap)  and (b1, b2, … bp)  and it is defined as:   

𝑆𝑆𝑆𝑆𝑆𝑆𝑐𝑐𝑀𝑀𝑀𝑀𝑖𝑖𝑀𝑀𝑐𝑐(𝐴𝐴,𝐵𝐵) =
𝐴𝐴.𝐵𝐵

|𝐴𝐴| · |𝐵𝐵| 

Similarity based on position on taxonomies 

In the previous section, we have described content similarity that is based on the aggregation of local 
similarity between attributes. A particular situation occurs when the compared values (for example, colors, 
religions, or countries) are organized in taxonomies. If this is the case, we can use similarity functions based 
on position. We describe these position similarity functions from a general perspective as they can be used 
both as local function to compare values of any of the compared attributes; and, to compare users that are 
in a taxonomy, for example, the taxonomy of explicit communities (see D6.5 - WP6).  

Let K be an inner node of a certain concept hierarchy (Figure 6), then LK denotes the set of all leaf concepts 
from the sub-tree starting at K. Further, K1 < K2 denotes that K1 is a successor node (subconcept) of K2. 
Moreover, <K3,K4> stands for the most specific common object class of K3 and K4, i.e., <K3,K4> > K3 and 
<K3,K4> > K4 and it does not exist a node K'< <K3,K4> such that K' > K3 and K' > K4 holds. 

 
Figure 6: An example of concept hierarchy 

Similarity is computed for a given pair of objects where an individual can represent either a user itself or, in 
general, the value of an attribute. As described before, any individual is defined in terms of the concepts of 
which that individual is an instance and the attributes asserted for it (if any). In graph representations these 
attributes can be relations connecting the individual to other individuals or primitive values (like scalars, 
numbers, or symbols).  We then can use different measures depending on the position of individuals.  
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• One simple similarity by position would be:   

𝑆𝑆𝑆𝑆𝑆𝑆 (𝐾𝐾3,𝐾𝐾4)
𝑑𝑑𝑑𝑑𝑝𝑝𝑑𝑑ℎ < 𝐾𝐾3,𝐾𝐾4 >
𝑆𝑆𝐴𝐴𝑀𝑀(𝑑𝑑𝑑𝑑𝑝𝑝𝑑𝑑ℎ)  

For example, in the topic taxonomy (see Figure 7), we compute similarity based on the position of 
concepts (or individuals):  

SIM(bronze age, antiquity) = 2/3 and SIM(bronze age, geometry) = 0 
 

 
Figure 7: An example of topic taxonomy 

• Another option is to use the cosine similarity [69] to reflect the similarity by the position of 2 individuals 
in a certain taxonomy. We also use the cosine similarity [69] to reflect the similarity by the position of 2 
concepts (or individuals) in a certain taxonomy. Note that vectors representing these individuals are not 
explicitly built. Instead, we use the following formula to compute similarity by position where the 
similarity between two concepts is given by the number of their common superconcepts, and their total 
number of superconcepts.  

𝑆𝑆𝑆𝑆𝑆𝑆(𝐴𝐴,𝐵𝐵) =
|𝑆𝑆𝑛𝑛𝑑𝑑𝑑𝑑𝐼𝐼𝑠𝑠𝑑𝑑 (sup(𝐴𝐴) ,   sup(𝐵𝐵))|

�sup(𝐵𝐵) .�|sup(𝐴𝐴)|
 

Where sup(C) are all the concepts in the taxonomy that are superconcepts of C. In the example (Figure 6) 
superconcepts of Algebra = {Maths, Sciences, Topics} 

• Jaccard measure uses the superconcepts sets and computes the ratio of Intersection over Union. The 
Jaccard coefficient measures similarity between finite sample sets, and is defined as the size of the 
intersection divided by the size of the union of the sample sets: 

𝐽𝐽(𝐴𝐴,𝐵𝐵) =  
|𝐴𝐴 ∩ 𝐵𝐵|
|𝐴𝐴 ∪ 𝐵𝐵|

=
|𝐴𝐴 ∩ 𝐵𝐵|

|𝐴𝐴| + |𝐵𝐵| − |𝐴𝐴 ∩ 𝐵𝐵|
 

 

We also are exploring how to use similarity metrics based on graph embeddings consider all the information 
about users, artifacts, interactions, interpretations etc. expressed as a graph (RDF Graph) according to the 
ontology, and different algorithms (RDF2Vec, RESCAL, Trans-E etc.) might be used for computing embeddings 
of the nodes of the graph. Then, you can use this vectorial representation of nodes to compute the similarity 
(e.g. cosine similarity) between two nodes.   

All the measures that we have used for community detection are described in Annex: Similarity measures 
catalog.  

Perception of similarity 

In previous section we have supposed that the weights that determine the importance of each feature 
(attribute) has been manually established during the configuration process by the museum curators.  
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There are other advanced options to learn these weights. Our research [21] proposed a similarity function 
that reflect perception. Specifically, it reflects either perception of one specific user u, or more interestingly 
perception of a group of users p sharing a common profile (explicit community). Because this measure is a 
weighted similarity measure, we also address the fundamental problem of learning a weight model for 
features. i.e., it is necessary to give a greater similarity contribution to an important attribute than to other 
less important ones regarding perception of similarity.  Regarding perception of similarity related work exists 
in the field of human psychology, where similarity is defined a relationship that holds between two 
perceptual or conceptual objects and serves to classify objects, form concepts and make generalizations [70]. 
As it is noted in [22], similarity between objects is not solely dependent on the characteristics of those 
objects. It is also affected by the context, and by other present and immediately past stimuli, as well as long-
term experience with related objects.  

Design of new similarity measures 

Although the catalogue offers a variety of similarity measures, it may be needed to define or adjust new 
similarity measures for a certain case study. This section describes some issues that affect the design of 
similarity measures. They are most often discussed in the context of similarity measures for vector 
representations although they can also affect structured or graph representations.  

The first issue is that we must ensure that the local similarity functions produce meaningful results when the 
feature values are null. Note that there can be at least two meanings for null: not-applicable, and applicable-
but-unknown. We need to be aware of the specific semantic of null or having different tokens that are 
handled differently by the local similarity functions or by the global similarity measure’s aggregation.  

The second issue is aggregating local similarities for numeric-valued features that have different ranges of 
values. The solution is to scale either the features values or the similarity which is what we did above using 
min-max scaling by dividing by the range of permissible values. 

We need also to consider whether the features are independent of each other, or whether their values are 
correlated. Informally speaking, if two features are not independent, then their local similarity values result 
in a degree of double-counting. That is related with the weights used by the global similarity measure when 
aggregating the local similarity values. Weights come from a domain expert (museum curators); however, 
this may not be an easy task, because while experts may have a sense of which features are more important 
than others, rarely will they be able to quantify the importance. An alternative is to learn them automatically: 
this requires that the similarity measure be used within some tasks for which we have an evaluation measure; 
then the learning algorithm can search for the weights that give highest validation dataset performance for 
that evaluation measure. 

Application Scenarios  
We are experimenting the community model with the case studies of the SPICE project plus a synthetic 
domain with artificial users of the Prado Museum. We have postponed some of the experimentation work 
with IMMA, GAM and DMH datasets for next semester. The table in Figure 8 summarizes the data and 
algorithms employed up to now. 

We have preliminary results using data of first experiments defined by the user journeys developed in WP2 
Workshop #3 (see also D2.3).  

The datasets of case studies Prado Museum, MNCN, HETCH, IMMA and GAM are in the github repository: 
https://github.com/spice-h2020/prototype-clustering/tree/main/data  

 

  

https://github.com/spice-h2020/prototype-clustering/tree/main/data
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Case Study  Dataset  Algorithm  Visualization  

  #Users  #Items  #Interactions      

Prado Museum  171  30  1759 
Similarity Clustering 
and Social Network 
algorithms  

Graphs  

MNCN  61  -  900 Agglomerative 
Clustering  

Graphs and 
FCA  

HECHT  78  -     

IMMA  8  11  107 Similarity by 
interactions  Graphs  

GAM  128  12    Emotion similarity 
Clustering  - 

Figure 8: Table resuming the Case studies where the clustering algorithms have been applied 

In different meetings and following different refinement processes, case studies have identified some of the 
target communities and demographic clusters (see D2.3 for details) that have been refined and formalized 
as explicit communities in an ontology (WP6).  Note that more target communities can be defined for further 
experimentations. Some examples of these target communities are senior citizens both free going and 
residents at a senior care centre, rural dweller families and asylum seekers in DMH case study; school children 
(more than 12 years old) and teachers from different types of schools in MNCN, Deaf communities in GAM; 
healthcare workers, Black and Irish, migrant communities in IMMA and students from different types of 
schools (Jewish/Arab) in Hecht.  Next subsections describe the advances on experiments for the different 
application scenarios.  

Prado Museum (synthetic dataset)  

In this first scenario, we have used an artificial dataset applied to users and artworks from Museo del Prado 
of Madrid (Spain). This dataset is an excerpt from Wikiart Emotion Dataset [51]. It contains 30 artworks from 
the Prado Museum (30) and 1760 annotations of emotions from 171 different users. We started the 
implementation of the community model tools using this dataset until we obtained data from case studies. 
We can divide the solutions implemented in this dataset into two groups: community detection based on 
clustering and community detection based on graph analysis. 

Community detection based on clustering  

We have implemented a full architecture where we can define different similarities functions to apply in 
different clustering algorithms. We have defined a common interface for all similarity functions and, based 
on this interface, we implemented different similarities to compare users and artworks (see Annex: similarity 
catalog for additional details on the implementation).  

In the Community Module the SimilarityCommunityDetection class is used to detect communities 
based on a clustering algorithm. Besides the name of the clustering algorithm and its specific parameters 
(see section: Clustering algorithms based on similarity), it receives a dataset (we have tested with a synthetic 
dataset with users and their emotions to artworks) and a configuration of the similarity functions; and 
generates the list of clusters (sets of users) detected.  
    community_detection = SimilarityCommunityDetection(users_emotions_df) 

    result = community_detection.calculate_communities(metric='euclidean', n_clusters=5) 
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During testing we need to experiment with different configuration of algorithms and different similarity 
functions and weights. This has been done using simple interfaces (Figure 9). 

 
Figure 9: A simple interface for algorithm and similarity configuration 

We have experimented using the following similarity functions to compare users:  

• Emotion similarity: compare the similarity between two users using the emotions felt when interacting 
with the same picture. 

• Euclidean similarity: applied in numeric lists, for example, it is used to compare attribute representing 
the number of pictures seen by users. 

• Cosine similarity: applied in a numeric list, for example, a vector that contains 1 or 0 depending on if 
users felt a positive or negative emotion in each artwork. 

To compare artworks, we tested: 

• Colour similarity: This measure uses the weighted euclidean distance between the dominant colour of 
each painting in HSV space. The dominant colour is the center of the biggest cluster when applying k-
means on the artwork image pixels in RGB space. 

• Wikidata content similarity: This measure employs the knowledge about the elements depicted in an 
artwork stored in Wikidata. For each artwork, we created a list of contents collecting the values for the 
“depict” property in Wikidata. The first test over these lists highlighted those common contents were not 
frequent so we enlarge the list of contents using the concept hierarchy defined in Wikidata with the 
properties “instance of” and “subclass”. The final list is computed traversing this hierarchy up to 2 levels. 
Finally, the similarity measure is computed using Jaccard over the list of contents. 

• Knowledge similarity: This similarity uses the information about the artist and the art movement that 
the artworks belong to. This information is extracted from the WikiArt Emotion Dataset. 

Community detection based on graph analysis  

The second way to detect communities is by applying algorithms based on graph analysis. To do that, we use 
graphs based on the emotion that users felt for each artwork. Using this information, we created a graph 
that each node that represents a user and edges relates to users who felt a concrete emotion in the same 
artwork. As a result, we created a graph per emotion included in the dataset. Using these graphs, we 
implemented a class to detect communities. Its functionalities are implemented in 
GraphCommunityDetection class. We have experimented with two graph algorithms to detect implicit 
communities:  
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• Markov Cluster Algorithm: based on simulation of flows in graphs. 
• Greedy Clustering Algorithm: comparing the edges inside a cluster and the edges outside the cluster. 

Again, we use a simple interface to configure both algorithms (Figure 10). 

 
Figure 10: A simple interface for configuring graph algorithms. 

The information to configure links could be users’ emotions about artworks, users’ polarities about artworks, 
users’ preferences about artworks seen, information (yes/no) if users visited or not an artwork. Based on 
your selection in Step 2, you should select the values used to create the force links between users in the 
graph.  

Visualization 

We have tested different options to visualize the communities detected and different ways to explain the 
common features of each community. A prototype of the visualization tool (Figure 11) is available at 
https://jljorro.github.io/communities_visualization/ 

https://jljorro.github.io/communities_visualization/
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Figure 11: Prototype of a visualization tool (https://jljorro.github.io/communities_visualization/) 

 

MNCN (Madrid) 
The experimentation in the Museo Nacional de Ciencias Naturales of Madrid (Spain) involves visits from 61 
students from Schools and Secondary Schools of the Madrid Community, namely, Colegio Arcangel (5th and 
6th grade), Colegio nuestra señora de val (6th grade – 2 groups), Colegio San Francisco de Asis (2º ESO 
secondary course), and CEPA Aluche (adult course). These groups are used as the starting point as explicit 
communities.  

Regarding personal attributes, the experiment does not collect individual personal information about the 
individual students. Instead, personal attributes are inherited from the properties about their schools and 
grades (explicit communities).  The grade represents the course in which the student is enrolled (and so her 
age). We have information about the school type financing (private or public) and the location zone: zone 
where the school is located (Madrid city or suburbs). 

User generated content is collected using a questionnaire where students mark different yes/no options 
related to museum topics. So, in the case of MNCN, interaction attributes do not refer to specific museum 
items but to museum abstract topics, namely, responsible consumption, pollution and means of transport 
and invasive species. 

From this input information we applied algorithms to extract implicit communities, generate explanations to 
describe the communities detected and apply a visualization technique where museum responsible and 
school’s manager have been reflecting on the communities detected and the intra-groups and inter-groups 
relations, comparisons with other schools, and how location or financing affects the topics of interest. 
Interaction attributes reflect the students' answers to 5 questions about the topics of interest. These 
attributes are formalized in a binary vector for each user, where the value 1 corresponded that this option 
was selected by the user and 0 if not. Then, we could compare the answers pattern of all users to detect 
implicit communities. 

In a second approach we experimented with a dataset where we grouped types of student’s answers:  

• Responsible consumption: we classify all answers in 3 options based on actions in which the student 
would be willing to make more responsible consumption (reduce consumption, change transport, and 
recycle). 

• Pollution: classification of the current transport based on their pollution (high, medium, low). 

https://jljorro.github.io/communities_visualization/
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• Type of transport: these options could be private or public transport. 

These datasets are included in the GitHub repository, folder data/MNCN.  

Community detection  
Community detection process uses the information about users (personal, interaction and explicit 
communities) to get a list of implicit communities. These communities are visualized and explained using the 
common properties between its members. 

Community detection uses ExplainedCommunitiesDetection a variation of Agglomerative Clustering 
with cosine similarity on the user vectors where instead of k we detect communities complying with 
significant percentages. That means that we do not specify the number of communities to detect in this 
population, but the algorithm detects a community when it detects a significant (75%) percentage of users 
with a common property. For example, 75% of the community A members refer to use private transport. We 
incrementally increase the k value (the number of communities to detect) until all communities detected can 
be explained. This implementation is included in the GitHub repository and Examples 4 and 5 use it to search 
the communities of MNCN (https://github.com/spice-h2020/prototype-
clustering/tree/main/examples/MNCN). 

 
The process generates explanations of a community identified by the number of clusters. For example, using 
the first dataset of answers, and configuring the percentage of common answers of users in 94%, we obtained 
10 communities. Figure 12 shows an example of an explanation based on attributes for implicit community 
6.  

 
Figure 12: Example of explanations based on attributes. 

The explanation showed us the answer that we selected by 94% of users of the community (or more) 
 
Visualization  
Explanation and visualization techniques allow museum curators and school managers to analyse and 
compare the implicit and explicit communities and do reflection on the topics of interest. We use an external 
tool (Gephi) to visualize the community graphs. Gephi1 allows to apply different layouts to visualize graphs 
and to apply some methods to filter the information, for example, filter edges by some value or nodes by 
some properties. 

We visualize a graph where each node represents a student and an edge between two nodes represents a 
similarity link between both students. As all users are interconnected, we chose a clearer visualization (Figure 
13) where edges are not visible. Instead, similarity values are used as forces and the more similar students 
are closer in the graph. In addition, for each node, we include the explicit communities where the student is 
included, that is the values extracted from their schools, and the number of implicit communities detected 
by our algorithm. Figure 13 shows the visualization of the students classified in the implicit communities. 
Each colour (or number) corresponds to a specific implicit community. Figure in the right emphasizes students 
that belong to the explicit community: private schools. We can analyse what are the implicit communities 
detected among private schools’ students. For example, many of them belong to community 6 and 5 and 
very few members belong to communities 1,22, or 11 (see descriptions of community groups).  

 
1 https://gephi.org  

https://github.com/spice-h2020/prototype-clustering/tree/main/data/MNCN
https://github.com/spice-h2020/prototype-clustering/tree/main/examples/MNCN
https://github.com/spice-h2020/prototype-clustering/tree/main/examples/MNCN
https://gephi.org/
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Figure 13: Visualization of MNCN communities using Gephi 

This type of visualization allows us to detect if there is a relationship between some implicit communities in 
respect to explicit communities. Based on these results, we wanted to implement a visualization tool that 
can compare both types of communities and include different interactions elements to extract information 
(for example, it shows common properties of users included in two communities). 

As future work we want to analyse the hierarchy over the implicit communities.  
 
IMMA (Dublin)  

IMMA has performed the experiences Slow Looking, Deep viewpoints and Viewpoints (see more details at 
D2.3 and D7.5). In this section we analyze the initial data and the preliminary results although further 
experiments are planned.  

Regarding personal attributes, the experiences do not collect individual personal information about the 
individual citizens. Instead, personal attributes are inherited from the properties about the explicit 
communities identified from the target and action groups, namely:  

• University staff and Students from DCU MELLIE Programme  
• Asylum seekers from Dublin City University MELLIE Programme  
• Young people living with long-term illnesses as part of HELIUM’s Youth Advisory Committee  
• Healthcare workers from St James’s Hospital  
• Black and mixed-race Irish activists from the group Black and Irish  
• Migrants from the New Communities Partnership Network  
• Secondary school children living in Dublin from the Fighting Words Programme  

Each user is explicitly asserted as a member of a group. Users could inherit the common attributes in the 
communities. These common attributes need to be described by the use case experts in the museums (see 
D7.4 and D7.5).  

User generated content is collected using a set of questions with textual answers that refer to museum items. 
In this use case interaction attributes refer to specific museum items. Regarding interaction attributes, the 
experiment includes 107 interactions within 11 museum items from the IMMA viewpoints artworks, available 
at Linked Data Hub (Figure 14).  
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Figure 14: Dataset from IMMA Viewpoints in Linked Data Hub (https://spice.kmi.open.ac.uk/dataset/details/46) 

These interactions attributes have been extracted from free text questions. Here we show some examples of 
questions/answers: 

 
How do you think you would feel if you unexpectedly encountered this object in your house or in 
your garden? Would it be a welcome guest or an uncomfortable presence? "Uncomfortable presence, an 
alien object" 

"How might you recreate this piece using materials around your own home? Is there anything that 
you could repurpose to create this piece yourself?" "Autumn leaves" 

"What would your best friend think about this artwork?" "That it's a bit mad and fun" 

 

In the internal representation of data (Figure 15), we observe that Emotion Score = null meaning that the 
sentiment analysis process will be included to complement these textual answers.  

 
Figure 15: Internal representation of the interactions available for IMMA Viewpoints. 

From this input information we applied algorithms to extract implicit communities, generate explanations to 
describe the communities detected and apply a visualization technique. Unfortunately, the initial dataset 
(Viewpoints) is too small to apply clustering algorithms and extract conclusions about the best configuration 
for the algorithms or the best suitable visualization techniques. We will extend experiments with additional 
data from the application scenarios.   



 

 

SPICE GA 870811  D3.5: Prototype clustering techniques
  V1.0 April 2022 

 
33 

We have used ExplainedCommunitiesDetection as a variation of Agglomerative Clustering where 
instead of k we detect communities complying with significant percentages. We have configured the 
clustering algorithm with the cosine similarity. This implementation is included in the GitHub repository 2. An 
example of an explanation based on attributes for the obtained communities is shown in Figure 16. 
 

 
Figure 16: An example of explanation based on attributes for IMMA case study. 

HECHT (Haifa)  

In the experiments on HECHT museum there is a complete dataset3 that contains a complete description of 
demographic personal attributes from 60 students:  

• Type of School System: GJ: State-Jewish, GA: State-Arab, GJR: State-religious, GH : State-Haredi, MJR : 
Integrates religious-secular Jew, IH : Haredi-Independent. 

• Gender: F: Female, M: Male, O : Other. 
• Grade Level: value between 7 and 12. 
• Ethnic Group: J: Jew, C : Christian, AC : Arab-Christian, AM : Arab-Muslim, DZ : Druze, BD : Bedouin, CRK 

: Circassian, DK: Do not know 
• Politics group: VL: Very left, L : Left, C : Center, R : Right, VR : Very Right, DK : Do not know 
• Level of religiosity: S: secular, M : Traditional, R : religious, VR : Very religious, H : Haredi. 

Community detection algorithms identify implicit communities within these personal attributes. Besides, 
some explicit communities of interest are defined using values from these attributes. This experiment is 
interested in the analysis of politics and religious groups.  

Regarding interaction attributes, the experiment performs a questionnaire completed by different students 
that refers to different topics of interests, like BELIEFS, OPENESS, KNOWING HISTORY  

Examples of questions that refer to beliefs and openness: (answers in values 1 to 6, where 1 "Strongly 
disagree" and 6 "Strongly agree"):  

- There are beliefs that are so important, and I will never leave them - 
no matter how good the arguments against them 

- A person should constantly examine his beliefs in the light of new 
information or evidence 

- I tend to classify people as for or against me 
- I believe that if we allow students to hear controversial opinions - it 

may only confuse and adversely affect them 
 

2https://github.com/spice-h2020/prototype-clustering/tree/main/examples/IMMA   
 
3 https://github.com/spice-h2020/prototype-clustering/blob/main/data/HECHT/AllData15122021.xlsx  
 

https://github.com/spice-h2020/prototype-clustering/tree/main/examples/IMMA
https://github.com/spice-h2020/prototype-clustering/blob/main/data/HECHT/AllData15122021.xlsx
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- I think there are many wrong ways, but only one right way - in almost 
every case 

- I consider myself an open and tolerant person towards other people's 
lifestyles 

- I think we should turn to senior clerics for decisions on moral matters 

We do not have results until the date of this draft deliverable. We are working to classify the information of 
dataset and define composed (global) similarity functions to this domain.  In this domain the weights that 
determine the importance of features is an important issue. Weights are experimentally learnt from the 
interaction with the community model and the museum curators. An interface to experiment with different 
sets of weights is used to help this process.  

GAM  

The Galleria D’Arte Moderna (GAM) Turin general target audience is people from the deaf community. In the 
initial experiment4 we have 12 items and 128 users with personal data: gender, age, museum, interest. The 
interactions are based on a questionnaire that includes emojis for representing the feelings that the artwork 
evoked a user. We have a representation of what kind of emotions are represented by each emoji so as a 
future work we will work on adapting the emotion similarity measures based on these emojis. We are still in 
the process of experimentation with this scenario.  

DMH 
Design museum Helsinki has a brief description of 4 communities described by DMH leaders. These 
communities are: 

• Senior citizens at a senior care centre: Senior citizens living in Kustaankartano (a senior care centre in 
Helsinki) who meet and interact with each other and use technologies such as the "Digital wall" and 
Virtual Reality headsets assisted by a mediator(s).   

• Senior citizens (free going): Senior citizens living in Helsinki, Kuopio or other towns and can attend 
workshops and exhibits at the Design Museum or a local library hosting Design Museum’s event. 

•  Rural dweller family: Families composed of parents and children who live in rural areas and have access 
to a local library without having to travel too far (distance is subjective). 

•  Asylum seekers: Individuals and families who are claiming asylum in Finland and have not yet received a 
permit for a long-term stay. 

However, until the date of this deliverable we have not got a dataset to detect these communities in this 
case study and this work is planned as future work. 

Conclusions 
In this document we have reviewed the community model advancements, first prototypes and results on 
some of the SPICE use cases. We have reviewed the state of the art of community detection algorithms. We 
distinguish between clustering and graph analysis algorithms. Note that there is no community detection 
algorithm that can be universally used for every type of dataset and there is no similarity measure that can 
be used by every algorithm on every dataset. Parameter settings are crucial in the performance of a clustering 
algorithm and similarity configuration (user-user, item-item) affects the results.  

We have reviewed different approaches to similarity computation and described a catalog of preexisting 
similarity functions that will help the museum curators to configure and experiment with the communities 
in each case study. Good data visualizations also will help curators and final users to analyze, validate and 
explain the clusters generated by the algorithms. We have reviewed the factors for choosing a clustering 
algorithm and discuss how to evaluate the results.  

 
4 https://github.com/spice-h2020/prototype-clustering/tree/main/data/GAM  

https://github.com/spice-h2020/prototype-clustering/tree/main/data/GAM
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We have experimented with community detection methods with different test domains, and we have 
described the results. Our goal is to find scrutable models to promote reflection about contents, show 
differences within groups (both explicit and implicit) to tackle preconceptions of homogeneity based on the 
pre-existing explicit communities. Besides similarity between groups allows to tackle preconceptions of 
heterogeneity. The resulting community model will support the recommender system (see D3.6) that won’t 
be oriented to the typically popular contents or based on providing “more of the same” similar contents to 
the users (the so called, filter bubble). Instead, community model will support variety and serendipity to the 
recommendation results.  
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Annexes 
A. Example of community detection code 
An example of this type of community detection is implemented in Example 3 in Prototype Clustering 
Repository (https://github.com/spice-h2020/prototype-clustering). 

 
Figure 17: Source code of an example using graph algorithms 

 

https://github.com/spice-h2020/prototype-clustering/blob/main/examples/example3.py
https://github.com/spice-h2020/prototype-clustering
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Figure 18: Source code of an example using ExplainedCommunityDetection algorithm 

 

B. Similarity functions catalog 
Similarity 
function     Types Implementation 

Euclidean Global/local Content numeric vectors sklearn.metrics.pairwise.euclidean_distances 

Manhattan Global/local Content  numeric vectors sklearn.metrics.pairwise.manhattan_distances 
Jaccard Local Position sets/multisets sklearn.metrics.jaccard_score 

Cosine  Global/local Position vectors metrics.pairwise.cosine_similarity 

Simple Position Local  Position instances or concepts in 
taxonomies 

Github 

Colour_sim Local content colors Class DominantColorSimilarity(Similarity)   
Local github  

Emotion_sim  Local Position emotions Local Github 

Wikipedia content_sim Local  Content artworks  Local Github 

  

Minkowski  

Description 
Minkowski distance is a metric in a normed vector space which can be considered as a generalisation of both 
the Euclidean distance and the Manhattan distance. It is named after the German mathematician Hermann 
Minkowski. 
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Minkowski distance is typically used with p=1 or p=2  which correspond to the Manhattan distance and the 
Euclidean distance, respectively.  We use direct implementations for Euclidean and Manhattan and not the 
general one.  

Euclidean  

Description 
Euclidean similarity = 1-Euclidean distance.  

In mathematics, the Euclidean distance between two points in Euclidean space is the length of a line segment 
between the two points.  

 
Image from: https://en.wikipedia.org/wiki/Euclidean_distance#/media/File:Euclidean_distance_2d.svg 

 
For points given by Cartesian coordinates in n-dimensional Euclidean space, the distance is 

  

Euclidean similarity is used as a global similarity function to aggregate the results of local similarity values of 
every attribute of the compared objects. Euclidean similarity is used as a local similarity if the attribute values 
are numeric vectors (n>=1). Note  n=1 refers to simple numeric values.  

Implementation:  
We have used the implementation from the scikit-learn library  

https://scikit-learn.org/stable/modules/classes.html#module-sklearn.metrics.pairwise 
sklearn.metrics.pairwise.euclidean_distances computes the distance between two points in the euclidean-
space n-dimensional. Each point would be represented as a vector array X and Y. In SKLearn, for efficiency 
reasons, the euclidean distance between a pair of vector x and y is computed as: 

dist(x, y) = sqrt(dot(x, x) - 2 * dot(x, y) + dot(y, y)) 

This formulation has two advantages over other ways of computing distances. First, it is computationally 
efficient when dealing with sparse data. Second, if one argument varies but the other remains unchanged, 
then dot(x, x) and/or dot(y, y) can be pre-computed.  

Example:    
It is applied as a local sim measure to compare the number of pictures seen by users (size 1 vector)  and it is 
used as global sim measure to aggregate the local sim values. 
>>> from sklearn.metrics.pairwise import euclidean_distances 

https://en.wikipedia.org/wiki/Euclidean_distance#/media/File:Euclidean_distance_2d.svg
https://scikit-learn.org/stable/modules/classes.html#module-sklearn.metrics.pairwise
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>>> X = [[0, 1], [1, 1]] 
>>> # distance between rows of X 
>>> euclidean_distances(X, X) 

array([[0., 1.],  [1., 0.]]) 

Manhattan 

Description  
The taxicab metric is also known as rectilinear distance, L1 distance, L1 distance, snake distance, city block 
distance, Manhattan distance or Manhattan length, with corresponding variations in the name of the 
geometry. The latter names allude to the grid layout of most streets on the island of Manhattan, which causes 
the shortest path a car could take between two intersections in the borough to have length equal to the 
intersection distance in taxicab geometry. It measures distance following only axis-aligned directions. 

  
Implementation:  
We have used the implementation from the scikit-learn library  

https://scikit-learn.org/stable/modules/classes.html#module-sklearn.metrics.pairwise 
sklearn.metrics.pairwise.manhattan_distances(X, Y=None, *, sum_over_features=True) 
Compute the L1 distances between the vectors in X and Y.  With sum_over_features equal to False it returns 
the componentwise distances. 

Manhattan similarity = 1-Manhattan distance 
Example: 
sklearn.metrics.pairwise import manhattan_distances 
manhattan_distances([[3]], [[3]])  
array([[0.]]) 
manhattan_distances([[3]], [[2]]) 
array([[1.]]) 
manhattan_distances([[1, 2], [3, 4]],         [[1, 2], [0, 3]]) 
array([[0., 2.], [4., 4.]]) 

Jaccard  

Jaccard similarity is a statistic used for gauging the similarity and diversity of sample sets. It was developed 
by Paul Jaccard and independently formulated again by T. Tanimoto. Thus, the Tanimoto index or Tanimoto 
coefficient are also used in some fields.  

It is computed by computing the ratio of Intersection over Union. The Jaccard coefficient measures similarity 
between finite sample sets, and is defined as the size of the intersection divided by the size of the union of 
the sample sets: 

  

Note that by design 0<= J(A,B) <=1.   If A and B are both empty, define J(A,B) = 1.  Jaccard similarity also 
applies to bags, i.e., Multisets. This has a similar formula,[4] but the symbols mean bag intersection and bag 
sum (not union). The maximum value is 1/2. 

 

https://en.wikipedia.org/wiki/Snake_(video_game)
https://en.wikipedia.org/wiki/Borough_(New_York_City)
https://scikit-learn.org/stable/modules/classes.html#module-sklearn.metrics.pairwise
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Implementation 

sklearn.metrics.jaccard_score 

Example 
sklearn.metrics.jaccard_score(y_true, y_pred, *, labels=None, pos_label=1, 
average='binary', sample_weight=None, zero_division='warn') 

>>> import numpy as np 
>>> from sklearn.metrics import jaccard_score 
>>> y_true = np.array([[0, 1, 1], [1, 1, 0]]) 
>>> y_pred = np.array([[1, 1, 1], [1, 0, 0]]) 
>>> jaccard_score(y_true[0], y_pred[0]) 
0.6666... 

Cosine Similarity  

cosine_similarity computes the L2-normalized dot product of vectors. That is, if x  and  y  are row vectors, 

their cosine similarity  k  is defined as:  

This is called cosine similarity, because Euclidean (L2) normalization projects the vectors onto the unit sphere, 
and their dot product is then the cosine of the angle between the points denoted by the vectors. On L2-
normalized data, this function is equivalent to linear_kernel.  This kernel is a popular choice for computing 
the similarity of documents represented as tf-idf vectors. cosine_similarity accepts scipy.sparse matrices. 
(Note that the tf-idf functionality in sklearn.feature_extraction.text can produce normalized vectors, in which 
case cosine_similarity is equivalent to linear_kernel, only slower.) 

Implementation  
sklearn.metrics.pairwise.cosine_similarity(X, Y=None, dense_output=True) 

Simple Position similarity  

Description 

It computes the similarity between two instances (or concepts) in a taxonomy using their position. 

SIM (A,B) =  depth (LCS (A,B)) / MAX Depth of taxonomy. 

LCS stands for Least Common Subsummer between A and B. 

Implementation  

Color similarity 

Description 

https://scikit-learn.org/stable/modules/classes.html#module-sklearn.metrics
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.pairwise.cosine_similarity.html#sklearn.metrics.pairwise.cosine_similarity
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.pairwise.cosine_similarity.html#sklearn.metrics.pairwise.cosine_similarity
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.pairwise.cosine_similarity.html#sklearn.metrics.pairwise.cosine_similarity
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.pairwise.linear_kernel.html#sklearn.metrics.pairwise.linear_kernel
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Calculates the dominant color similarity between two artworks.  It uses the weighted euclidean distance 
between the dominant colour of each painting in HSV space.   

References:  

Dasari, Haritha & Bhagvati, Chakravarthy & Jain, R.. (2005). Distance measures in RGB and HSV color 
spaces. 333-338. (PDF) Distance measures in RGB and HSV color spaces 
Belén Díaz-Agudo, Guillermo Jiménez-Díaz, Jose Luis Jorro-Aragoneses: User Evaluation to Measure the 
Perception of Similarity Measures in Artworks. ICCBR 2021: 48-63 User Evaluation to Measure the Perception of 
Similarity Measures in Artworks | SpringerLink 

The dominant colour is the center of the biggest cluster when applying k-means on the artwork image pixels 
in RGB space.  

 
where hsvi is the dominant colour or artwork Ii in HSV space. 

Implementation:  
Class DominantColorSimilarity(Similarity): 

https://github.com/spice-h2020/prototype-
clustering/blob/main/community_module/similarity/localsimilarity/colorSimilarity.py  
def computeSimilarity(self, A, B): 
        """Method to calculate the dominant color similarity between artwork A and artwork 
B. 
        Parameters 
        ---------- 
        A : str            The first artwork to calculate the dominant color similarity. 
        B : str            The second artwork to calculate the dominant color similarity. 
        Returns 
        double 
            Value of the dominant color similarity between artwork A and artwork B. 
        """ 
        a = self._dominantColor(A) 
        b = self._dominantColor(B) 
        dh = min(abs(a[0]-b[0]), 360-abs(a[0]-b[0])) / 180.0 
        ds = abs(a[1] - b[1]) 
        dv = abs(a[2] - b[2]) / 255. 
        minS = min(a[1],b[1]) 
        #distance = math.sqrt(dh * dh + ds * ds + dv * dv) # Euclidean 
        distance = math.sqrt(dv * dv + a[1]*a[1] + b[1]*b[1] - 2*a[1]*b[1]*dh) # Weighted 
euclidean 
        #distance = math.sqrt(minS*minS*dh*dh + ds*ds + dv*dv) # Geodesic distance in HSV 
        #distance = minS*dh + ds + dv # Weighted L1 
        return 1. - distance 

EmotionSimilarity 

https://github.com/spice-h2020/prototype-
clustering/blob/main/community_module/similarity/emotionSimilarity.py  

 

This similarity uses the annotations in Wikiart Emotion Dataset about the emotions evoked by the artworks 
in different users. It is computed using the 3 most popular emotions and calculating the distance between 
emotions according to the Plutchik wheel of emotions (Figure below) –that places similar emotions close 
together and opposites 180 degrees apart, like complementary.  

https://www.researchgate.net/publication/221205971_Distance_measures_in_RGB_and_HSV_color_spaces
https://link.springer.com/chapter/10.1007/978-3-030-86957-1_4
https://link.springer.com/chapter/10.1007/978-3-030-86957-1_4
https://github.com/spice-h2020/prototype-clustering/blob/main/community_module/similarity/localsimilarity/colorSimilarity.py
https://github.com/spice-h2020/prototype-clustering/blob/main/community_module/similarity/localsimilarity/colorSimilarity.py
https://github.com/spice-h2020/prototype-clustering/blob/main/community_module/similarity/emotionSimilarity.py
https://github.com/spice-h2020/prototype-clustering/blob/main/community_module/similarity/emotionSimilarity.py
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where eik is the k-th most popular emotion in artwork ai 

Wikidata content similarity  

Description  

This measure employs the knowledge about the elements depicted in an artwork stored in Wikidata. For 
each artwork, we created a list of contents collecting the values for the “depict” property in Wikidata. A first 
test over these lists highlighted those common contents were not frequent so we enlarged the list of contents 
using the concept hierarchy defined in Wikidata with the properties “instance of” and “subclass”. The final 
list is computed traversing these hierarchies up to 2 levels. Finally, the similarity measure is computed using 
Jaccard over the list of contents.  

 
where Ci is the list of contents in artwork ai . 

Taxonomy similarity  

Description  

Similarity is computed for a given pair of objects where an individual can represent either a user itself or, in 
general, the value of an attribute. Any individual is defined in terms of the concepts of which that individual 
is an instance and the attributes asserted for it (if any). In graph representations these attributes can be 
relations connecting the individual to other individuals or primitive values (like scalars, numbers, or symbols).  
This similarity function is computed using the following equation:  

𝑆𝑆𝑆𝑆𝑆𝑆 (𝐾𝐾3,𝐾𝐾4)
𝑑𝑑𝑑𝑑𝑝𝑝𝑑𝑑ℎ < 𝐾𝐾3,𝐾𝐾4 >
𝑆𝑆𝐴𝐴𝑀𝑀(𝑑𝑑𝑑𝑑𝑝𝑝𝑑𝑑ℎ)  

Implementation 

https://github.com/spice-h2020/prototype-
clustering/blob/main/community_module/similarity/taxonomySimilarity.py  

https://github.com/spice-h2020/prototype-clustering/blob/main/community_module/similarity/taxonomySimilarity.py
https://github.com/spice-h2020/prototype-clustering/blob/main/community_module/similarity/taxonomySimilarity.py
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