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Executive Summary

SPICE is an EU H-2020 project dedicated to research on novel methods for citizen curation of cultural heritage
through an ecosystem of tools co-designed by an interdisciplinary team of researchers, technologists, museum
curators engagement experts, and user communities. This technical report D4.4 presents the results of Task 3 of
Work Package 4: “Linking and Discovering Digital Assets“.

This task develops novel methods for supporting the interlinking and discoverability of digital assets. Specifically,
the aim is to automatically generate semantic metadata that would allow to link between distributed assets orig-
inating from different data management systems. The methods developed leverage taxonomies of concepts and
combines symbolic and sub-symbolic methods for automatically generating metadata annotations, to complement
the annotations derived by museums’ curators. Linking is performed by automatically classifying artworks under two
complementary dimensions: (a) descriptive features of the artworks (e.g. nature, abstract, people, etc...), and (b)
emotions and sentiments (e.g. joy, fear, shame, ...). First, we focus on content-based descriptions, specifically, we
consider the problem of automatically classifying artworks within a taxonomy of descriptive artwork features. Cru-
cially, we explore how neuro-symbolic learning, combining image features, textual metadata, and Knowledge Graph
embeddings, could help in mitigating the problems derived from data sparsity in cultural heritage image archives.
Second, we focus on sentiment-based descriptions. Specifically, we consider the problem of automatically clas-
sifying artworks within a taxonomy of common-sense, affective descriptions. We introduce the novel DEGARI 2.0
system, an affective reasoner that exploits the logic TCL in order to generate and classify content according to the
circumplex theory of emotions devised by the cognitive psychologist Robert Plutchik.
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1 Introduction

SPICE is an EU H-2020 project dedicated to research on novel methods for citizen curation of cultural heritage
through an ecosystem of tools co-designed by an interdisciplinary team of researchers, technologists, and museum
curators and engagement experts, and user communities. In the SPICE project, we are researching on an intelli-
gent system that classifies artworks to support several tasks such as metadata curation and linking across image
collections.

This technical report D4.4 presents the results of Task 3 of Work Package 4: “Linking and Discovering Digital Assets“.
The task develops novel methods for supporting the interlinking and discoverability of digital assets. Specifically, the
aim is to automatically generate semantic metadata that would allow to link between distributed assets originating
from different data management systems. The methods developed leverage taxonomies of concepts and combine
symbolic and sub-symbolic methods for automatically generating metadata annotations, to complement the annota-
tions derived by museums’ curators.

Linking is performed by automatically classifying artworks under two complementary dimensions: (a) descriptive
features of the artworks, and (b) emotions and sentiments.

First, we focus on content-based descriptions, specifically, we consider the problem of automatically classifying
artworks within a taxonomy of descriptive artwork features. Deep Learning (DL) methods have proved to be very
successful for many image classification tasks. However, applying DL methods to real-world cultural heritage col-
lections for the task of artwork subject classification is problematic. Objects in this domain are characterised by
different levels of heterogeneity: of media and techniques, of categories, of time-periods, just to mention a few. This
heterogeneity makes the related training features sparsely distributed. In Chapter 2, we report on an empirical in-
vestigation where we apply Neuro-Symbolic Deep Learning techniques to a paradigmatic case of cultural heritage
archive: the Tate Gallery collection open data. We pose the question of what type of feature engineering could help
in reducing the impact of data sparsity in this domain. Crucially, we explore how neuro-symbolic learning, combining
image features, textual metadata, and Knowledge Graph embeddings, could help in mitigating the problems derived
from data sparsity in cultural heritage image archives.

Second, we focus on sentiment-based descriptions. Specifically, we consider the problem of automatically classi-
fying artworks within a taxonomy of common-sense, affective descriptions. DEGARI is one of the sensemaking tools
developed in coordination with WP6 (see Deliverable 6.3 and Deliverable 6.6) used to both enrich, via reasoning
mechanisms, and suggest novel affective-based connections among items within a collection [1]. Here we report
how a novel version of the system, called DEGARI 2.0 [2], has been exploited in the project to discover and create
semantic connections between different items within a collection. Interestingly, the same mechanisms can also be
used to collect connections also between different museum collections.

The rest of the deliverable is structured as follows. Chapter 2 is dedicated to studying how neuro-symbolic learning
can automatically generate descriptive, content-based annotations. Next, Chapter 3 reports on the DEGARI system
for automatically generating affective-based annotations, before concluding the report in Chapter 4.

1
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2 Neurosymbolic learning for generating content-based descriptions

2.1 Introduction

Deep Learning (DL) methods have expedited the advancement on image classification tasks [3]. However, image
classification through DL is still an open challenge in domains characterised by a high variance, for example, of data
samples and labels [4, 5]. The negative impact of noisy labels, in particular, has been sufficiently acknowledged in
the literature as one unavoidable problem in many real-world settings [6].

In the SPICE project, we are researching an intelligent system based on DL that classifies artworks to support
several tasks in the domain such as metadata curation or knowledge linking and discovery across cultural heritage
archives. Crucially, in this domain, datasets are characterised by different types of heterogeneity - e.g., diversity of
media and techniques, and of time-periods. Due to this variance, training features are sparsely distributed across
the categories of interest.

In this chapter, we explore the application of Deep Learning (DL) techniques to a paradigmatic case of cultural
heritage archive: the Tate Gallery collection open data [7]. We interrogate on (a) what type of data preparation
strategies could be applicable to these data and on (b) how neuro-symbolic learning, combining image features,
textual metadata, and Knowledge Graph (KG) embeddings, could help in mitigating the problem of data sparsity.

To answer these questions, we devise a layered set of experiments. First, we aim at evidencing the negative impact
of data sparsity on standard DL approaches and start by only considering visual features. Secondly, we look into
how metadata could help in partitioning the training space and mitigating some effects of the sparsity of image
features. Third, we incrementally introduce new features from textual metadata and background knowledge, including
Knowledge Graph embeddings, and explore how they improve the classification performance.

The chapter is structured as follows. After introducing the related work (Section 2.2), we provide the background
context of this research (Section 2.3). Concurrently, we characterise the problem of data sparsity in artwork subject
classification and present our research questions. In Section 2.4, we illustrate the approach and system architecture,
which is based on current state of the art methods applied to this domain. Section 2.5 reports on the implementation
of the experiments and results. Findings from these experiments are instrumental in deriving the lessons learnt and
future directions of this work, as further discussed in Section 2.6.

2.2 Related work

Deep Learning (DL) is applied to a wide variety of problems in the context of cultural heritage applications [4, 5].
The tasks can range from the identification of artworks from noisy Web pictures (NoisyArt [8]), to the classification
of artistic media [4], stylistic, and genre-specific artwork traits [9]. In this work, we focus on the problem of learning
subject classifications from an heterogeneous cultural heritage archive. The problem of classifying artwork subjects
is unique in its own respect compared to the types of image classification tasks that are typically tackled in the
Cultural Heritage literature, which are thoroughly reviewed in [10]. The most relevant state of the art approach which
we have identified to model the case of artwork subject classification is ContextNet [5], which focuses on learning a
set of tasks such as Genre, Period, and School from an homogeneous set of paintings. A limitation of this approach
is that only attributes in the target dataset are considered in the learning, disregarding other potential sources of
artistic knowledge. To harness this potential, Castellano and Vessio proposed an extension of ContextNet, where
properties gathered from Wikidata and DBpedia are used to construct a dedicated ArtGraph [11]. Inspired by the
work in [5, 11] we propose to reuse the knowledge which has been previously distilled from DBpedia in the form of
KG embeddings, through the RDF2Vec model [12]. Differently from prior works, we intend to explore the integration
of off-the-shelf KG embeddings, as an alternative method to curating ad-hoc artistic Knowledge Graphs.
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Moreover, we propose to adopt different types of embeddings to qualify different artistic features. Specifically, we
test the integration of KG embeddings produced on the artist metadata with a linguistic model (distilBERT [13]),
as a feature preparation from artwork titles. Combining different types of features and embeddings to leverage the
strengths of the various approaches is common in recent research in neuro-symbolic learning [14]. However, no
work so far has explored the data sparsity problems that emerge when DL methods are applied to cultural heritage
image collections.

2.3 Background and research questions

In the SPICE project [15], a team of researchers and museum professionals are developing novel methods for citizen
participation and engagement, focused on the method of slow looking. This approach is based on designing scripts
made from a set of prompts or questions about selected artworks [16]. Prompts are designed based on properties
of the artworks that are factual (e.g. abstract, landscape, people, objects) rather then contextual (e.g. genre, period,
author). A Deep Learning system should classify artworks according to a given subject list (e.g. abstract, landscape,
people, objects) and use these metadata to link images across collections, thus helping curators in reusing scripts
across similar artworks. However, cultural heritage collections are characterised by a heterogeneity of images and
subject metadata. This characteristic hinders the successful application of state of the art DL approaches, which
are typically developed on homogeneous samples (e.g. only on paintings), and optimised for categories that are not
related to the actual content of the artwork (e.g. "Genre", "Century" [5]).

The Tate Gallery archive is a paradigmatic case of cultural heritage image collection, characterised by artworks
with a significant heterogeneity of factual properties. The dataset provides metadata and image urls of collection
items summarised in two CSV files with general metadata (artworks and artists), and detailed metadata distributed
in approximately 100k JSON files1. The collection includes artworks from more than 3000 artists spanning 142
genres over a period of approximately 500 years. Metadata was manually annotated by expert curators, including a
taxonomy of more than 16,000 distinct subjects, organised in 11 top-level subjects covering key concepts relevant
to the slow looking application scenario: abstraction, architecture, nature, people, etc.. The Tate Gallery collection
demonstrates dimensions of heterogeneity that are typical of cultural heritage image archives:

• Image heterogeneity: images represent artworks produced with different mediums and techniques

• Sample heterogeneity: the data distribution is very unbalanced

• Semantic heterogeneity: subject annotations are based on the content of the assets but are produced incre-
mentally over a large time-span by an unspecified number of annotators.

This makes the labelled data incomplete, messy, and sparsely distributed. In this chapter, we explore how to address
data sparsity from different perspectives, that we illustrate.

Tackling data sparsity by configuring the learning space. On the one hand, real-world subject taxonomies are
overly heterogeneous both semantically and in terms of class population. This characteristic of real-world collections
significantly complicates the learning of robust classification models. For example, learning to differentiate a collie
from a spitz is, in principle, more difficult than learning to tell dogs and cats apart, especially given the lack of sufficient
examples representing different dog breeds. On the other hand, the few high-level subjects that have sufficient
population (e.g., macro-classes such as people, nature, society, etc.), are also too generic and therefore difficult
to abstract from heterogeneous training samples. Thanks to the fact that subjects are organised taxonomically, we
entertain the idea that we could use such sparsity to our advantage. Specifically, we make the hypothesis that
learning low-level subjects can help the classification of high level subjects. That is, we ask: [RQ1] Can we use the
knowledge of the subject taxonomy structure to help with the categorization?

1The following summaries are produced with SPARQL Anything [17] on the original data sources from the Tate Gallery Collection open data
project on GitHub. Data and queries can be reviewed and reproduced [18]
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Tackling data sparsity by partitioning data by the means of key features. We observe how metadata could
provide a useful input in understanding the reasons of the visual heterogeneity of artwork collections. Specifically, we
partition the learning task dividing the data by technique/medium used. For example, we compare the task of learning
subjects on artworks of any medium with the results obtained when subjects are learned only on photography.
Thus, we pose the following research question: [RQ2] Does splitting the set by artwork medium (e.g., photography,
graphite, sculpture,...) help?

Tackling data sparsity with neuro-symbolic learning. Finally, we explore the impact of different combinations
of features on the learning performance, including both visual and non-visual features, such as the textual embed-
dings from the artwork title and the knowledge graph embedding from the artist entity on DBpedia. In other words:
[RQ3] Does combining text embeddings, KG embeddings, and visual embeddings improve the categorization per-
formance?

2.4 Methodology

To devise an architecture for subject classification from artwork images, we take as a reference ContextNet [5], a
state of the art architecture for neuro-symbolic learning on artwork classification tasks. Namely, we treat the different
artwork subjects - e.g., nature, people, architecture, as tasks to learn jointly in a Multi Task Learning (MTL) fashion.
To generate visual embeddings from the input images, we maintain the same Convolutional Neural Network (CNN)
backbone as ContextNet, i.e., a ResNet50 [19] from which the last fully-connected layer is removed.

However, differently from [5], our aim is to classify artwork subjects which can express a variety of factual elements
about the artwork - e.g, physical, social, or abstract concepts. Therefore, we introduce a few modifications to the
ContextNet framework to accommodate the task of subject artwork classification. The resulting pipeline is illustrated
in Figure 2.1.

First, different annotations which concern the same task (or subject) can co-exist in an artwork. For instance, J.M.W.
Turner’s “Nant Peris, looking towards Snowdon" in Figure 2.1 depicts a mountain peak and a river view, both over-
looked by a cloudy sky. These elements all fall under the nature subject. Thus, we configure the Network for
multi-label classification. Specifically, in the last layer of the Network, Softmax activation is replaced by a Sigmoid
activation. Indeed, while Softmax activations, which are typically interpreted as classification probabilities, are dis-
tributed across neurons, sigmoid outputs are computed independently on each class node. As a result, Sigmoids
can predict more than one class with high probability. Similarly, we rely on a binary cross-entropy loss function, so
that multiple subject predictions can be generated for an artwork.

In ContextNet, the visual embeddings are projected to the vector representation of the artwork context in the broader
painting set [5]. This representation is derived from a KG where paintings are grouped by author and also annotated
with attributes such as timeframe and medium. In the pipeline of Figure 2.1, we adopt a similar approach to Con-
textNet and infuse the Network with background knowledge through an encoder module, optimised through a smooth
ℓ1 loss function. However, we test a different combination of embeddings to represent non-visual artwork features.
In particular, we embed the title and artist metadata in the visual representation of the artwork. For the artwork
title, we capitalise on a pre-trained linguistic model which has been shown to provide compact textual embeddings:
DistilBERT [13]. To model the authorship information, instead, we apply the off-the-shelf RDF2Vec model [12] to
the DBpedia entities which represent each artist. We can further concatenate the linguistic and KG embeddings, to
derive a unified representation for the injected background features. Nonetheless, because the individual features
are maintained as separate modules ( Figure 2.1), we can also test the effects of incrementally adding new features
to the learning process.

Ultimately, different components contribute to the overall training loss of the Network. We use the same notation as
[5] to characterise these contributing factors through a set of parameters. First, the visual classification is influenced
by the different learning tasks. Formally, the contribution of the t-th task to the binary crossentropy loss (ℓc) is
weighted with respect to a λt so that

∑T
t=1 λt = 1. Similarly, because the classification and encoder modules are

optimised through different loss functions, the relative contribution of each function to the overall loss is weighted
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Figure 2.1: The proposed architecture for artist subject classification, where visual embeddings are combined with
textual and KG embeddings, to jointly train the Network on multiple tasks - e.g., recognising people, places, nature,

and so forth.

through different parameters. Let these weights be λc for the classifier loss, and λe, i.e., the complement to 1 of
λc, for the encoder loss. By proxy, these two parameters allow us to leverage the degree to which the visual and
non-visual components of the embeddings influence the training.

2.5 Experiments

2.5.1 Data preparation

In our experiments, we focus on the Tate Gallery Open Data as our reference cultural heritage archive. The published
data includes two summary CSVs and more then 10k JSON files with detailed metadata on artworks and artists. The
SPARQL Anything framework [17] provides a means to filter and integrate the required features from the broader
CSVs and JSON documents provided in this collection [18]. In addition to retrieving the JPEG image files that are
available from the Tate website, we extracted the following data fields: (i) the unique artwork identifier, (ii) the title,
(iii) the subject annotations, as well as (iv) the medium, or material, of each artwork. We also queried DBpedia
to retrieve the entities, marked through a Uniform Resource Identifier (URI), which match a certain artist name.
Because a string can match multiple DBpedia entities and to account for homonyms, we manually validated the
collected artist entities.

We start by considering the 11 top-level concepts that provide abundant training examples (i.e., at least 3’000
examples per class), for the purpose of supervised Deep Learning. These are listed in Table 2.1.

Moreover, we want to reduce the sparsity of the example distribution across the sub-categories of a subject. With the
term sub-category, we refer to the children of a subject, in the Tate taxonomy - e.g., “female figure" is a sub-category
of “people". Thus, we focus on the six subjects which provide the highest number of sub-concepts. As highlighted in
blue in Table 2.1, these are: nature, architecture, places, people, objects, and abstraction.

With this premise, we further prune the space of sub-concepts with a two-fold objective. First, because samples
should ideally overlap across the top-level subjects that are learned jointly, we select sub-categories which are worth

5



SPICE GA 870811 Deliverable D4.4Linking and Discovering Digital Assets
v1.0 October 31, 2022

Table 2.1: Statistics of the top-level subjects in the Tate collection.
Top subject Artworks Subjects
Nature 36,477 24
Architecture 29,787 19
Places 23,842 12
People 20,798 14
Society 13,991 6
Objects 12,381 10
Abstraction 8,503 8
Emotions, Concepts, Ideas 8,248 4
Work and Occupations 5,133 3
Symbols and Personifications 5,022 3
Leisure and Pastimes 3,129 2

at least 700 examples. Second, for each subject, we want to select non-overlapping sub-categories which identify
distinct concept groups. Thus, if two child categories of the same node are selected at the previous step, only the
more specific one is retained. For instance, we prioritise annotations of male and female portraits over the more
generic portrait label.

After retaining only records which are annotated with respect to the target categories and sub-categories, we are left
with 54,494 records2, 99.6% of which (54,293 records) have a non-corrupted image file associated.

Ultimately, we want to ensure that examples are balanced across categories when forming our training, validation,
and test splits. Therefore, we resort to the multi-label stratified sampling strategy proposed in [20, 21], which is
conveniently provided with the scikit-multilearn package3. At this stage, we apply a 80/10/10 ratio to split the data
into training, validation, and test sets.

Additionally, because we are also interested in grouping artworks by artistic medium (RQ2), we prepared a dedicated
subset for each medium. The metadata which describe the different artistic media are sparsely annotated. Thus, we
ought to apply a series of basic Natural Language Processing (NLP) steps to converge towards coherent groups.
Specifically, we reduced the raw text to lowercase, and derived a set of tokens which excludes the standard English
stopwords, and which is free from alphanumeric characters and spurious white spaces. After deriving word stems
through the Snowball method, we also filtered out any duplicated tokens - e.g., “paper graphite, on paper ".

Thanks to the availability of a reference glossary of art terms on the Tate website4, we could derive a set of keywords
to canonicalise heterogeneous medium annotations. Specifically, we merged semantically-related keywords (e.g.,
ink and pen) to gather a sufficient number of data points per medium. In sum, we converged towards ten subsets that
are representative of different materials. These are: painting, sculpture, graphite, etching, screenprint, watercolour
& gouache, ink & pen, lithograph, engraving & intaglio, and photography.

2.5.2 Experimental setup

To address our main research questions (Section 2.3), we configure three distinct experiments. Across all exper-
iments, the performance on each task (i.e., subject) is evaluated in binary terms. Specifically, in addition to the
overall classification accuracy on a task, we also track the Precision (P), Recall (R), and F1 achieved on the retrieval
of positive examples of a task. For instance, in the context of the people task, the correct recognition of a person in
a portrait increases the P, R, and F1 metrics, irrespective of the system’s ability to recognise that a different artwork
does not depict any people.

2This number is lower than the sum of the figures in Table 2.1, as the same artwork can be annotated with more than one subject.
3http://scikit.ml/
4https://www.tate.org.uk/art/art-terms/
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Experiment A. The objective of the first experiment is to assess whether or not configuring the learning space on
the basis of the Tate subject taxonomy improves the classification performance (RQ1). Thus, we start by considering
a simplified version of the architecture presented in Section 2.4, where only the visual embeddings extracted from a
CNN are considered. In this context, we compare two training configurations. The first configuration only relies on the
macro-categories which represent each task, whereas the second configuration considers finer-grained annotations
for each task. In the former case, the network is optimised to generically classify people, places, objects, natural,
abstract elements, and architectural components. In the latter configuration, the goal is to learn sub-classes of each
subject - e.g., to recognise mountains, rivers, and beaches, as opposed to classifying “nature" generically - as in the
example of Figure 2.1.

Experiment B. The second experiment is conceived to test the effects of splitting training examples by artwork
medium - e.g., watercolour, sculpture, intaglio, to further reduce the sparsity of the learning space (RQ2). There-
fore, in this setup, we start by evaluating the performance results obtained when the complete image collection is
considered, without discriminating by artistic medium. We then repeat the performance assessment across the ten
sub-samples which we have prepared for different artistic media, as described in Section 2.5.1.

Experiment C. The last experiment is a study of the impact of visual, textual, and KG embeddings when learning
artwork subjects (RQ3). In particular, we explore the integration of numeric features representing the title and artist
of an artwork. Therefore, at this stage, we contrast the performance of the following pipelines or ablations:

(img) The first method considers only visual embeddings to classify artworks, thus following the same methodology
of Experiments A and B.

(img + text) In this pipeline, the visual embeddings are also optimised with respect to the linguistic embeddings
extracted from a pre-trained DistilBERT model. Specifically, the linguistic model is fed with the title of each
artwork. To derive a single vector for each input sentence, we follow a series of transformations which are
standard practice in NLP. First, the hidden states produced by the last four layers are summed together to derive
a word vector for each input token. Then, we average the second to last hidden layers of each token to form the
sentence embedding.

(img + KG) We also test a neuro-symbolic variation of the “img" pipeline, where the visual embeddings are pro-
jected onto the 200-dimensional embeddings returned by a RDF2Vec model [12] which was pre-trained on DB-
pedia entities. Specifically, if the DBpedia URI associated with an author is found in the RDF2Vec feature space,
the related KG embedding is retrieved to guide the optimisation of the visual embedding, through the encoder
module (Section 2.4).

(img + text + KG) Lastly, we consider the scenario where the textual embedding and the KG embedding are con-
catenated, to contribute to the learning routine. In other words, this ablation models the methodology of Sec-
tion 2.4 (Figure 2.1).

2.5.3 Results

Experiment A. The results obtained on the test set when training the model only on macro-subject labels are
reported in Table 2.2a. With the exception of the nature task, the model is incapable of detecting the presence
of any artwork elements. The non-zero accuracies indicate that the model has learned to produce only negative
predictions for the tasks (except for nature). In fact, for the nature class, which contributes the highest number
of training examples, the model outputs mostly positive predictions. Hence, it has simply learned to replicate the
imbalanced distributions of the training data.

However, when finer-grained subject annotations are introduced, the performance improves, particularly in terms of
Precision (Table 2.2b). Nevertheless, the overall performance remains dramatically low across all tasks. Indeed,
while introducing finer-grained categories may help discriminating different subjects, it also makes the distribution of
training examples for each specialised category more sparse.
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Table 2.2: Performance comparison when we change the hierarchical level (granularity) of the subject labels used
for training.

(a) Training on subject level one
Task Acc Pre Rec F1
nature 0.64 0.64 1 0.78
people 0.65 0 0 0
architecture 0.47 0 0 0
objects 0.8 0 0 0
places 0.58 0 0 0
abstraction 0.86 0 0 0

(b) Training on subject level two
Task Acc Pre Rec F1
nature 0.39 0.45 0.01 0.02
people 0.65 0.29 0 0.01
architecture 0.52 0.37 0.01 0.01
objects 0.84 0.14 0 0
places 0.63 0.21 0 0
abstraction 0.86 0.75 0.01 0.02

Experiment B. Based on findings from the previous experiment, here we consider finer-grained subject categories
for training our models. However, in this experiment, data points are further sampled by artistic medium. As shown in
Figure 2.2, in the majority of cases where the model is trained only on a specific medium, the F1 score is higher than
in the baseline scenario, where all materials are considered. A marginal performance decay was instead recorded
when classifying places from sculptures, where the already low F1 dropped to zero. In the scenario where only
graphites were considered, all results are equivalent or only marginally higher than the baseline curve, except for
the abstraction task, were the improvement was most pronounced. In the remaining scenarios, splitting examples
by artistic medium significantly benefited the performance. In particular, the highest F1 scores were achieved by
training only on:

• photographies to classify nature and people

• engraving & intaglio examples to classify people and places

• ink & pen works on the architecture task

• sculptures to classify objects

• screenprints to classify abstraction.

Nature People Archit. Objects Places Abstr.
0

0.2

0.4

0.6

0.8 all materials
painting
sculpture
graphite
etching
screenprint
watercolour&gouache
ink&pen
lithograph
engraving&intaglio
photography

Figure 2.2: Comparison of F1 scores before (black curve) and after (coloured curves) splitting the dataset by
artwork media.

Experiment C. Figures 2.3 and 2.4 illustrate the results obtained with the top-performing methods of Experiment
B (i.e., those trained solely on photography, engraving & intaglio, sculpture, ink & pen, and screenprint), through
different combinations of features. Crucially, the integration of non-visual features enhanced the baseline DL per-
formance across the majority of tasks and media. However, different performance trends can be observed that are
medium-specific and task-specific.
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To classify photography, linguistic embeddings were relatively more beneficial, in terms of performance increase, than
KG embeddings (Figure 2.3a). However, combining different embedding types led to highest F1 on the classification
of nature, people, and objects. Similarly, on the ink & pen sample, the integration of all tested features produced the
highest performance when classifying nature, people, places, and abstraction (Figure 2.3d).

In the case of sculptures, the largest margin of improvement is associated with the introduction of linguistic embed-
dings, for the majority of tasks (Figure 2.3c). Screenprints, instead, exhibit an opposite trend: overall, integrating KG
embeddings was preferable, in terms of performance, to only relying on linguistic features (Figure 2.3e). Interestingly,
the top performance achieved through the baseline on the abstraction task was unmatched, even after integrating
both the title and the artist features (Figure 2.4a). Indeed, the abstraction subjects explored in this evaluation mostly
encode colour and geometric traits, which are best learned through visual features.

On the engraving & intaglio set, the effects of applying neuro-symbolic learning differs from task to task (Figure 2.3b).
On the nature, architecture, places, and abstraction tasks, the introduction of text and KG embeddings ensured a
significant performance increase. By contrast, the improvement is only marginal when classifying objects. The
case of the people task is interesting because the integration of the linguistic embeddings led to a performance
degradation, and the introduction of KG embeddings only matched the baseline F1. However, leveraging both types
of embeddings improved the performance by 5%.

Overall, different tasks are learned most efficiently through a different combination of features, on different mediums.
Specifically, the highest F1 scores are observed:

• for nature: img+text on engraving (Figure 2.4b)

• for people: img+text+KG on photography (Figure 2.4d),

• for architecture: img+text and img+KG on engraving & intaglio (Figures 2.4b,2.4c)

• for objects: img+text+KG on photography (Figure 2.4d), img+text on sculpture (Figure 2.4b)

• for places: img+text on engraving & intaglio (Figure 2.4b)

• for abstraction: img on screenprint (Figure 2.4a).

2.5.4 Implementation details

The experiments discussed in this section were conducted on Google Colaboratory. In our training configuration,
we initialised the ResNet50 module with weights pre-trained on ImageNet. Weights of the classification heads were
instead initialised through the Xavier method [22]. Consistently with [5], parameters were updated via stochastic
gradient descent. In particular, we set the learning rate to 0.0001, with a weight decay of 0.00001 and a momentum
of 0.9. Through preliminary experiments to this paper, we found that updating parameters across the entire model is
preferable to fine-tuning only the last classification layer, likely due to the marked differences between the ImageNet
benchmark and the Tate collection. All tested models were trained for up to 150 epochs, with an early stopping
condition whenever the validation loss did not decrease for 30 successive epochs.

Each task contributed equally to the classification loss, i.e., for the six tasks explored in this paper, λt was set to
0.165. After testing different weight configurations for the loss, we set λc = 0.9 and λe = 0.1 across all experiments.
That is, we observed empirically that giving higher importance to the visual embeddings at training time ensures a
higher performance, on average.

Input images were resized to 224 × 224 pixels and normalised with respect to the ImageNet mean and standard
deviation. We relied on the Pytorch and transformers Python libraries to implement the proposed architecture. The
RDF2Vec embeddings, which we downloaded locally to speed up the processing time, are conveniently exposed
through the KGVec2Go resource [23].

The code, data, and pre-trained models which reproduce these experiments are available at: https://bit.ly/
3p3WV3M.
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2.6 Discussion

We conducted experiments with the purpose of exploring strategies for handling the data sparsity that characterises
cultural heritage collections. We asked whether the taxonomical structure of the labels can help in learning top
level categories (RQ1). Indeed, organising the training space according to the semantic hierarchy of objects helped
improve the classification performance. However it is not sufficient, alone, to handle sparsity. Next, we explored
the idea that image features may vary depending on the artistic medium (RQ2) and therefore learning should be
performed separately for each medium. We demonstrated how splitting by artistic medium helped significantly
improve the performance across the majority of tasks (with only one caveat: places on sculptures). Finally, we
conducted extensive experiments to study the impact of different feature sets on the various subjects, learnt on the
different media (RQ3). Here, we observe that different features are helpful for learning different tasks on different
media, and that there is no feature set that performs systematically better on all media and subjects.

On the basis of these findings, we elaborate on possible future work. First, learning what combinations are perform-
ing well was a costly operation. This evidence poses the question of how to autonomously learn the feature set that
is most representative for each subject. Hence, these results spark an important meta-learning task: To what extent
can we automatically devise the appropriate learning strategy depending on the three dimensions of feature
modality, artistic medium, and subject?
Second, we found that certain tasks are better learned on certain media. Could we use this behaviour as an
opportunity for transfer learning? In other words, could we use a model trained on a specific medium to recognise
the same subject on another medium? Even further, could we use the learned model on a different image collection,
to compensate for the imbalance (or even scarcity) of training examples? In the context of the SPICE project, we plan
to apply this method for characterising subjects on citizen-curated collections such as the Irish Museum of Modern
Arts (IMMA) archive5, within the Ireland case study.

Finally, in this work, we have attacked the classification problem as a Multi Task Learning (MLT) setting, following
relevant priors in the state of the art. Future work includes exploring the correlation between different tasks, i.e.,
studying which tasks are best learned jointly and which ones should be learned separately.

5http://imma.ie
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(a) Photography
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(b) Engraving and Intaglio.
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(c) Sculpture.
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(d) Ink and pen.
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(e) Screenprint

Figure 2.3: Experiment results by medium: comparison of F1 scores after incrementally combining visual
embeddings (img) with textual embeddings on the artwork title (text) and Knowledge Graph embeddings on the

artist feature (KG).
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Figure 2.4: F1 results for the experiments with different features (img, text, KG), grouped by medium.
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3 The DEGARI system for generating affective-based descriptions

3.1 Introduction

DEGARI 2.0 is an affective reasoner, one of the two developed in the context of SPICE (the other one is the Semantic
Annotator, developed in WP3: see Deliverable 3.4), that exploits the logic TCL [24] in order to generate and classify
content according to the circumplex theory of emotions devised by the cognitive psychologist Robert Plutchik [25,
26]1. According to this theory, emotions, and their interconnections, can be represented on a spatial structure, a
wheel (as reported in the left of the Figure 3.1), in which the affective distance between different emotional states
is a function of their radial distance. DEGARI 2.0 exploits the Plutchik’s ontology (see Deliverable 6.2), formalizing
such a theory. In particular, by following Plutchik’s account, complex emotions are considered as resulting from the
composition of two basic emotions (where the pair of basic emotions involved in the composition is called a dyad).
The compositions occurring between similar emotions (adjacent on the wheel) are called primary dyads. Pairs of
less similar emotions are called secondary dyads (if the radial distance between them is 2) or tertiary dyads (if the
distance is 3), while opposites cannot be combined2. An illustrative example showing the rationale used by DEGARI
2.0 to generate the compound emotions (in this case, the emotion Love as composed by the basic emotions Joy and
Trust, according to Plutchik’s theory) is reported in Figure 3.1. In the next sections, we frame the contribution of such
a system in the context of affective-based item linking and suggestions.

3.2 Related work

Emotions have been acknowledged as a primary component of the artistic experience for centuries; recently, their
role in art has been demonstrated through physiological experiments showing how correlates of emotions, such as
brain response and facial expressions, are affected by the experience of art [28, 29]. In addition to their role in
defining the way people experience artistic expression [30], from paintings and musical works to movies and novels,
emotions also provide a universal language through which people convey their experience of art, well beyond words.
Despite the differences in the expression of emotions across languages, and the influence of cultural factors, in fact,
emotions own an universal origin [31]: rooted in evolution, they provide the basis for intercultural communication, as
effectively demonstrated by the advancements in facial expression recognition [32, 33]. In this sense, emotions can
provide a suitable means for connecting people belonging to different groups, intended as culture, age, education,
and different sensory characteristics. Pervasive in human communication, emotions are expressed through multiple
channels, ranging from facial expression and body posture to spoken and written language. The expression of
emotions through language, in particular, lies at the basis of several models of emotions, including Shaver’s [34]
and Plutchik’s [26], and has prompted the creation of a number of resources for sentiment analysis in language
[35, 36, 37]. The application of these resources to art is straightforward: for example, the WikiArt Emotions project
[38] has collected the emotional response to the WikiArt online art collection, yielding a dataset of 4,105 artworks
with annotations for the emotions evoked in the observer. Experiments such as WikiArt Emotions have paved the
way to the extraction of emotions from text and tags to create affective art recommenders, like ArsEmotica [39, 40] or
the first version of DEGARI [41], able to classify and group artistic items well beyond the standard 6 basic emotions of

1The reasons leading to the choice of this model as grounding element of the DEGARI 2.0 system is twofold: on the one hand, this it is
well-grounded in psychology and general enough to guarantee a wide coverage of emotions, thus giving the possibility of going beyond the
emotional classification and recommendations in terms of the standard basic emotions suggested by models like the Ekman’s one (widely used
in computer vision and sentiment analysis tasks). This affective extension is aligned with the literature on the psychology of art suggesting
that the encoding of complex emotions, such as Pride and Shame, could give further interesting results in AI emotion-based classification and
recommendation systems [27]. Second, as anticipated above, the Plutchik wheel of emotions is perfectly compliant with the generative model
underlying the TCL logic.

2The ontology is available here: https://raw.githubusercontent.com/spice-h2020/SON/main/PlutchikEmotion/ontology.owl.
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Ekman’s theory [31] and embracing richer, finer-grained models. DEGARI 2.0 is framed within this global challenge
and has been used to link and suggest museum items sharing different types of emotional stances.

3.3 Background and research questions

State of the art affective recommenders for the artistic domain are not yet able to deal with the ‘echo chamber’
problem (i.e. they are only able to suggest and aggregate items evoking the same emotion) and, in addition, they
have never been tested on the grounds of diversity and inclusion. On the other hand, here we show how DEGARI
2.0 can be used as an inclusive, explainable and diversity-seeking affective art recommender, aimed at bridging the
differences in the experience of art between different communities. In particular, such system aims at overcoming
the limitations of traditional recommendation approaches by exploiting the Plutchik’s ontological structure to suggest
museum items not only labeled with the same emotions, but - as mentioned - also to group and recommend artworks
evoking similar (but not exactly the same) emotions or opposite emotions. This kind of alternation in the content sug-
gestion mechanism aims at leading to more comprehensive exploration and fruition of museum collections. Indeed,
suggesting museum items evoking different emotions from the ones already experienced via the fruition of other
artworks, is based on the notion of perspective taking [42], i.e. seeing the world (e.g. an exhibition in this case) from
other perspectives. Since this approach is used to promote empathy, cohesion and inclusion across social groups,
reaching this goal would represent a huge advancement with respect to the current technologies (e.g. like social me-
dia or standard recommender systems) that often lead people toward content that fits their own viewpoint, promoting
fragmentation and fostering confirmation biases, instead of cohesion, inclusive reflection, and critical thinking.

Figure 3.1: Generation of novel Compound Emotions with DEGARI 2.0 by exploiting the Plutchik’s ontology (e.g.
Love as composed by Joy and Trust in the picture). The features and the probabilities characterizing each basic

emotion are obtained from the NRC lexicon. The Plutchik’s wheel of emotion in this figure reports only the
compound emotions representing the primary dyads, but our system works on the entire spectrum of dyads.

3.4 Methodology

In order to connect associated lexical features (used as typical properties) to the classes of the Plutck’s ontology
recreated in the T TCL language, we used the NRC lexicon [35].
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ITEM: Angles

Associate emotion:
Shame

Opposite 
Emotion

Similar 
Emotion

Same 
Emotion

ITEM: Farmers in the sun

Associate emotion:
Disapproval

ITEM: Maternity

Associate emotion:
Pride

ITEM: Back to the barn

Associate emotion:
Aggressiveness
Contempt
Dominance

Envy
Outrage
Pride

Figure 3.2: Example of Same, Similar and Opposite emotion recommendations of DEGARI 2.0 from the GAM
dataset. This figure shows how the system is able not only to generate new compound emotions (see e.g. Figure 1)

but also to group and suggest cultural items according to their obtained Plutchik’s-based affective classification.
The entire dyadic structure of the Plutchik’s model is exploited to recommend items evoking different emotional

stances with the aim of providing a more inclusive and affective-based interpretations of cultural content.

Once the prototypes of the compound emotions are generated, the system is able to reclassify museum items taking
the new, derived emotions into account. As a consequence, such a reclassification allows the system to group and
recommend museum items based on the novel assigned labels and, as mentioned, a novel prerogative of DEGARI
2.0 consists in the possibility of delivering also diversity-seeking recommendations.

The Figure 3.2 reports an example of these different kinds of suggestions for the artefact entitled “Ritorno alla stalla”
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(“Back to the barn") of the GAM museum (Galleria Arte Moderna, in Turin). Based on the system’s output, this
item is emotionally linked to “Maternità” (“Maternity”: a statue of the GAM collection classified as evoking the same
emotional content as the original painting: “Pride”), to “Contadini al sole” (“Farmers in the sun", a painting labelled
with the similar emotion “Disapproval”; note that this emotion is considered “similar” according to the Plutchik’s model
since it is the one spatially adjacent to the category “Outrage” that is one of the categories, a “tertiary dyad” in the
Plutchik’s theory, to which the system has assigned the original item) and, finally, to the abstract painting “Angles”,
labelled with the opposite emotion “Shame” (in this case the opposition concerns the label “Pride”). Overall, the
system tries to categorize and link the items with respect to any of the original emotional categories found.

As anticipated, a final crucial feature of the DEGARI 2.0 classification system is represented by the fact that the
rationales of its classifications are entirely transparent and explainable (see Deliverable 6.3).

3.5 Experiments

DEGARI 2.0 has been evaluated in a number of ways (see Deliverable 6.6). Here we report an evaluation focused on
the user acceptability of the received inclusive-based affective recommendations for the GAM collection in Turin. This
measure is important since it is an indicator of how good the system is in detecting and suggesting the discovered
connections between items that are affectively related. The reported data extends a previous evaluation of the same
type reported in Deliverable 6.3. The evaluation consisted in a user study where 74 deaf participants, after having
been exposed to a number of affective-based recommendations based on their original selection, were asked to
compile an online questionnaire about the received suggestions. Here they had to rate, on a 10-point scale (from
1 to 10), the received recommendations based on the ‘same-emotion’ ‘similar-emotions’ and ‘opposite emotions’
categories . Overall they rated 91 recommendations.

Below, we report the results of the prototype applications of DEGARI 2.0 to the datasets provided by Gallery of
Modern Art (GAM).

Mean score: 5,79
Median total score: 6

Same Emotion Similar Emot. Opposite Em.
mean 5,78 6,23 5,25

median 6 6 5

standard deviation 0,61 0,71 1,06

Table 3.1: Results of the ratings of the deaf group in GAM on the DEGARI recommendations

The overall obtained results about the ratings are shown in Table 3.1. The users showed a moderate acceptance of
the received content suggestions. The average rating assigned to the total set of emotion categories proposed by
DEGARI was 5.79 with a median value of 6/10. Table 3.1 shows the mean, median and standard deviation values for
each emotion recommendation group (same, similar and opposite emotions). The recommendations that received
a better rating were the ones suggesting items linked to the original one through the property “similar emotion”. The
recommendations of items evoking opposite emotions (with respect to the original item selected in the game) were
the ones that received the worst rating.

3.6 Discussion

Overall, this experiment shows that the effort of tackling diversity-seeking, affective-based and explainable museum
recommendations received a moderate, improvable, acceptance. This datum also suggests that there are mecha-
nisms of cognitive resistance that prevent a full acceptance of connections going in a different direction from one’s
own preferences. From here, a first guideline that can be extracted for the improvement of diversity-seeking affective
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recommenders concerns the opportunity to adopt presentation devices for the mitigation of cognitive resistance
effects. Although the search for mitigation measures that wrap diversity into some meaning frame is an open re-
search area, the effectiveness of narrative formats [43, 44] and of ethically-driven digital nudging techniques [45, 46]
is worth exploring. A more immediate strategy that could be adopted in our system is also represented by the pro-
gressive recommendation of items evoking emotions that are gradually more distant from the starting one (where
the distance can still rely on the radial structure of the Plutchik’s wheel encoded in the ontology).
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4 Conclusions

In this deliverable, we developed novel methods for supporting the interlinking and discoverability of digital assets
across museum collections, for supporting citizen curation applications. In order to do that, we focused on auto-
matically generating semantic metadata that would allow linking between distributed assets originating from different
data management systems, and complement the annotations derived by the curators. Next, we plan to integrate
these methods within the workflow of SPICE pilots, specifically the Ireland and Turin case studies.
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