

This project has received funding from the European Union’s Horizon 2020 research and
innovation programme under grant agreement No 870811

D6.4 APIs Specifications

Deliverable information

WP WP6

Document dissemination level PU Public

Deliverable type R Document, report

Lead beneficiary OU

Contributors UNIBO, GVAM, PG, UCM, UNITO, CELI, UH, CNR

Date 26/04/2022

Document status Final

Document version V1.0

Disclaimer: The communication reflects only the author’s view and the Research Executive Agency is not
responsible for any use that may be made of the information it contains

SPICE GA 870811 D6.4 APIs Specifications – v1.0 – 26/04/2022

2

INTENTIONALLY BLANK PAGE

SPICE GA 870811 D6.4 APIs Specifications – v1.0 – 26/04/2022

3

Project information

Project start date: 1st May 2020

Project Duration: 36 months

Project website: https://spice-h2020.eu

Project contacts

Project Coordinator

Silvio Peroni

ALMA MATER STUDIORUM -
UNIVERSITÀ DI BOLOGNA

Department of Classical
Philology and Italian Studies –
FICLIT

E-mail: silvio.peroni@unibo.it

Scientific Coordinator

Aldo Gangemi

Institute for Cognitive Sciences
and Technologies of the Italian
National Research Council

E-mail:
aldo.gangemi@unibo.it

Project Manager

Adriana Dascultu

ALMA MATER STUDIORUM -
UNIVERSITÀ DI BOLOGNA

Executive Support Services

E-mail:
adriana.dascultu@unibo.it

SPICE consortium

No. Short name Institution name Country

1 UNIBO ALMA MATER STUDIORUM - UNIVERSITÀ DI BOLOGNA Italy

2 AALTO AALTO KORKEAKOULUSAATIO SR Finland

3 DMH DESIGNMUSEON SAATIO - STIFTELSEN FOR DESIGNMUSEET SR Finland

4 AAU AALBORG UNIVERSITET Denmark

5 OU THE OPEN UNIVERSITY United
Kingdom

6 IMMA IRISH MUSEUM OF MODERN ART COMPANY Ireland

7 GVAM GVAM GUIAS INTERACTIVAS SL Spain

8 PG PADAONE GAMES SL Spain

9 UCM UNIVERSIDAD COMPLUTENSE DE MADRID Spain

10 UNITO UNIVERSITA DEGLI STUDI DI TORINO Italy

11 FTM FONDAZIONE TORINO MUSEI Italy

12 CELI MAIZE SRL Italy

13 UH UNIVERSITY OF HAIFA Israel

14 CNR CONSIGLIO NAZIONALE DELLE RICERCHE Italy

mailto:silvio.peroni@unibo.it
mailto:aldo.gangemi@unibo.it
mailto:adriana.dascultu@unibo.it

SPICE GA 870811 D6.4 APIs Specifications – v1.0 – 26/04/2022

4

Executive summary

SPICE is an EU H-2020 project dedicated to citizen curation of cultural heritage. To support citizen curation,
the project research upon and develops an ecosystem of methods and tools co-designed by an
interdisciplinary team of researchers, technologists, domain experts, and user communities.

In Work Package 6, we design and implement the formal semantics for an integrated socio-technical system
for citizen curation. WP6, jointly with WP4, aims at devising a technical research infrastructure to integrate
multiple knowledge graphs and ontologies, a linked data social media layer, interface components,
annotation software, recommendation systems, data mining tools, and models/methods devised by the
SPICE work packages.

In this deliverable, we report on the interim specifications for APIs that have been developed and used in
SPICE.

SPICE GA 870811 D6.4 APIs Specifications – v1.0 – 26/04/2022

5

Document History

Version Release date Summary of changes Author(s) -Institution

V0.1 06/01/2022 Document structure preparation, template
definition of APIs with instructions for
contributors.

Enrico Daga (OU)

V0.2 13/03/2022 Collected information from partners All partners

V0.25 29/03/2022 Introduction and formatting for consistency Jason Carvalho (OU)

V0.3 07/04/2022 Code formatting, final API spec contributions,
document structure revision

Jason Carvalho (OU)

V0.4 11/04/2022 Internal review Luigi Asprino (Unibo),
Pedro Gonzalez (PG)

V0.5 26/04/2022 Internal review comments incorporated Jason Carvalho (OU)

V1.0 26/04/2022 Final version submitted to REA UNIBO

SPICE GA 870811 D6.4 APIs Specifications – v1.0 – 26/04/2022

6

Table of Contents
Project information ... 3

Project contacts ... 3

SPICE consortium ... 3

Executive summary ... 4

Document History .. 5

1 Introduction ... 8

2 SPICE Linked Data Hub API .. 8

2.1 Description of the system .. 8

2.2 Current applications and pilots .. 9

2.3 Metadata .. 11

2.4 Guide for developers .. 12

2.4.1 User operations ... 12

2.4.2 Management operations ... 15

2.5 OpenAPI Specification .. 16

3 User Model API .. 17

3.1 Description of the system .. 17

3.2 Metadata .. 17

3.3 Guide for developers .. 18

3.4 .. 18

3.5 Schemas ... 22

4 Community Model API .. 24

4.1 Description of the system .. 24

4.2 Metadata .. 25

4.3 Guide for developers .. 25

4.3.1 Community operations .. 25

4.3.2 User operations ... 27

4.3.3 Similarity operations .. 28

4.4 OpenAPI Specification .. 29

5 SPICE Semantic Annotator API .. 29

5.1 Description of the system .. 29

5.2 Metadata .. 32

5.3 Guide for developers .. 32

6 Social Recommender API ... 35

6.1 Description of the system .. 35

6.2 Metadata .. 35

6.3 Guide for developers .. 36

6.4 API Schemas ... 36

SPICE GA 870811 D6.4 APIs Specifications – v1.0 – 26/04/2022

7

7 Ontology server, query and reasoning services .. 37

7.1 Ontology Uploading and Reasoning calls via OWL-API (Steps 1-2) .. 38

7.2 Ontology Export as JENA Triple-based graph model (step 3) .. 40

7.3 External Exposure of the Graph Model in a SPARQL Server (step 4) ... 40

7.4 How to QUERY and UPDATE the exposed Fuseki 2 Model with SOH .. 41

7.5 How to QUERY and UPDATE the exposed Fuseki 2 Model with RDF Connection 43

7.6 Graphical Interface ... 44

7.7 Source code .. 46

8 Conclusions .. 47

SPICE GA 870811 D6.4 APIs Specifications – v1.0 – 26/04/2022

8

1 Introduction
SPICE is an EU H-2020 project dedicated to citizen curation of cultural heritage. To support citizen curation,
the project research upon and develops an ecosystem of methods and tools co-designed by an
interdisciplinary team of researchers, technologists, domain experts, and user communities.

In Work Package 6, we design and implement the formal semantics for an integrated socio-technical system
for citizen curation. WP6, jointly with WP4, aims at devising a technical research infrastructure to integrate
multiple knowledge graphs and ontologies, a linked data social media layer, interface components,
annotation software, recommendation systems, data mining tools, and models/methods devised by the
SPICE work packages.

In this interim deliverable, we describe progress of the APIs that have been developed for use within the
SPICE project architecture and their specifications. These APIs are predominantly used by pilot applications
to provide access to linked data, ontologies and reasoning services.

This will be followed by deliverable D6.8, detailing the final APIs specification and deployment.

The deliverable is structured as follows. For each API, this document introduces an overview of its intended
purpose in relation to SPICE work packages and any relevant design methodology employed. This includes a
report of how each API is currently being used within the SPICE project and, specifically, which pilot
applications are making use of its features. Details of the technical underpinnings of the APIs are provided.
Further background information on each API can be found in the dedicated deliverables. For each section, a
guide for developers is made available that details the functions available within each API and how to use
and configure them through the use of appropriate parameters. Example API requests and code snippets are
also provided. The APIs detailed in this report are the SPICE Linked Data Hub API, the User Model API, the
Community Model API, the SPICE Semantic Annotator API and the Social Recommender API. In addition,
we include technical documentation of the Ontology server, query and reasoning services, which rely on
Apache Jena1. Section 8 summarises and concludes the report.

2 SPICE Linked Data Hub API
2.1 Description of the system
The SPICE Linked Data Hub (LDH) was developed as a data infrastructure to support the acquisition and
management of dynamic data from a variety of sources including: museum collection metadata and digital
assets, social media events and user activities, systems’ activities (e.g., recommendations, reasoning
outputs), ontologies and linked data produced by pilot case studies.

The SPICE Linked Data Hub API is an instance of the API Factory software and underpins the functionality of
the LDH Portal; the front-end web-interface component of the LDH. The LDH-API exposes a selection of REST-
based user operations for creating, managing and consuming data as well as management functions which
are used by the web portal for creating datasets and managing permissions. The API’s position within the
wider LDH system is shown in Figure 2.1.1

1 http://jena.apache.org

SPICE GA 870811 D6.4 APIs Specifications – v1.0 – 26/04/2022

9

Figure 2.1.1: SPICE Linked Data Hub layout

As well as forming the technical backbone of the LDH portal, the LDH-API offers direct access to data storage
and retrieval functions for SPICE application and pilot developers, through a series of REST endpoints. Full
documentation on these API functions with example requests are included below in the Guide for developers.

The LDH-API operates primarily with JSON documents and makes use of MongoDB as its main data store. The
LDH-API also supports storage and retrieval of files (binary and text-based) and associated metadata. Single
datasets within the LDH can host a mixture of both JSON documents and binary files.

Parallel to the JSON data store is a graph database. All data within the LDH-API is also replicated into this
graph database as RDF and made available through the API via read-only SPARQL queries.

2.2 Current applications and pilots
There are currently around 30 SPICE datasets accessible via the API that have been collected in the context
of the following pilots:

• IMMA Viewpoints
IMMA Viewpoints is a mobile web application that encourages visitors to share their own response
to artworks in the grounds of the Irish Museum of Modern Art (IMMA). The IMMA Viewpoints web
application makes use of the LDH-API for file storage if artwork images and uses the JSON store for
application configuration and the collection, moderation and review of user responses.

• IMMA Deep Viewpoints
Deep Viewpoints builds on the original IMMA Viewpoints prototype, making use of the IMMA
Collection dataset stored on the Linked Data Hub. With Deep Viewpoints users can add artworks
from the IMMA collection to their own personal collections. Deep Viewpoints has a separate dataset
for storing data added by the users. This includes:

- personal artwork collections
- scripts and themes

SPICE GA 870811 D6.4 APIs Specifications – v1.0 – 26/04/2022

10

- users and passwords
- data generated when a user undertakes a script (e.g. answers to questions)
- moderation status of contributions

• InSpice
A web framework for the creation of citizen curation activities within the different museums involved
in SPICE. It proposes a template-based use model whereby museum curators can instantiate, manage
and publish activities based on one of the templates provided by the framework.
In this context, the LDH is used primarily as a storage, query and management space for the JSON
files used to define specific instances of framework activities, as well as to access the various works
and artifacts of the museums involved that already have an associated collection within the LDH.

• Hecht Museum – Student Experience
School students before, during and after a museum school trip at the Hecht Museum learn about
their country’s history and at the same time learn about the diversity of opinions regarding historical
and national issues. Students learn to interpret museum artifacts according to their own personal
views, reflect upon other students’ opinions, connect their opinions with tangible artifacts at the
museum, and perform citizen curation activities.
The LDH infrastructure is used within this pilot for managing 5 major objects with basic CRUD (Create,
Read, Update, Delete) operation: Users, User History, User Model Properties, User Generated
Content and Sourced Content.

• Design Museum Helsinki – Pop-up VR Museum
The focus of the Design Museum Helsinki (DMH) Case Study is on developing the citizen curation
methods by first gathering interpretations of DMH collection objects in workshops with selected end-
user communities, namely senior citizens, remote dwellers, and asylum seekers (D7.3, pg33). An
application known as the Pop-up VR Museum will be designed and accessible to audiences via
portable VR headsets. Its users can access, interact, and engage with Design Museum Helsinki’s
collections.
The experience of the Pop-up VR Museum is bound to be generative and dictated by a dynamic online
repository of artefacts (3D models) and narratives (audio recordings and textual data) stored in the
LDH. Mediators such as DMH staff, researchers, and members of affiliated institutions add artefact
ontologies and narratives collected from end-user contributors to the LDH.

• GAM Game
The case study of the Gallery of Modern Art (GAM) in Turin, which addresses the inclusion of deaf
people as target community, revolves around the notion of storytelling. Through the web app, called
GAM Game, users can create short stories by collecting and sequencing the artworks from the
museum collection, and add a personal response to each of the artworks in the story.
The LDH infrastructure is used to manage three main entities in the interaction with the client:

o User id and data, which include the links to the stories created by the user;
o Stories, each including its own properties (date, title, etc.) and the list of links to artworks by

which it is composed, and the user responses (stored in textual form) associated to each
artwork in the story;

o Artefacts, each accompanied by its metadata, which include both the ones extracted from
the collection catalogues and the ones added by the sensemaking components (associated
emotions, values, themes, etc.)

SPICE GA 870811 D6.4 APIs Specifications – v1.0 – 26/04/2022

11

• Madrid - Treasure Hunt
The case study of the Natural Musem of Natural Sciences of Madrid (MNCN) revolves around treasure
hunts in the museum. A treasure hunt consists of a series of searches guided by clues describing the
object in the collection to be found. Once the object is found, the game provides relevant information
related to it and may pose related questions.

The LDH infrastructure is used in this pilot to manage a series of entities in its interaction with the
client, such as user information, treasure hunt definitions, persistent application state information,
artefacts referenced in treasure hunts and user responses and interactions.

2.3 Metadata
id LDH-API

name The Linked Data Hub API

description The data API underpinning the SPICE Linked Data Hub. Supports
reading writing and querying of JSON documents and binary files and
querying of RDF data representations in SPARQL.

type API

release-date 20/12/2021

release-number v0.8.4 (main API)

v0.1.6 (SPARQL addon)

work-package WP4, WP6

pilot ALL

keywords JSON, RDF, SPARQL, REST

changelog

licence Apache Licence 2.0

release-link https://github.com/mkdf/api-factory/releases/tag/v0.8.4

https://github.com/mkdf/api-factory-sparql/releases/tag/v0.1.6

image

logo

demo https://api2.mksmart.org/ (access key required)

links https://github.com/mkdf/api-factory/ (main code repository)

https://github.com/mkdf/api-factory-sparql (SPARQL addon)

running-instance http://spice.kmi.open.ac.uk

credits Jason Carvalho (jason.carvalho@open.ac.uk); Enrico Daga
(enrico.daga@open.ac.uk)

related-components (reference other components’ ids)

https://github.com/mkdf/api-factory/releases/tag/v0.8.4
https://github.com/mkdf/api-factory-sparql/releases/tag/v0.1.6
https://api2.mksmart.org/
https://github.com/mkdf/api-factory/
https://github.com/mkdf/api-factory-sparql
http://spice.kmi.open.ac.uk/
mailto:jason.carvalho@open.ac.uk
mailto:enrico.daga@open.ac.uk

SPICE GA 870811 D6.4 APIs Specifications – v1.0 – 26/04/2022

12

bibliography

2.4 Guide for developers
The following is an overview of API functions. Full details on specific parameter usage are available via the
LDH-API’s live test interface at https://api2.mksmart.org/. Full OpenAPI specification is also referenced in the
OpenAPI specification section below.

Access to and usage of the LDH-API is via API keys. API keys can be registered on the LDH web portal and
assigned to specific datasets for either read, write or read/write access depending on the access control
limitations set by the dataset owner. All API calls must be authenticated, using HTTP Basic Authentication,
using the API key as both the username and password.

The API is made up of both user and management operations. Management operations are reserved for the
creation and management of datasets, user keys and permissions. These management features are only
available to API administrators and are also used as an interface to the API by the LDH web portal.

2.4.1 User operations

BROWSE

A read-only API endpoint for retrieving data. The endpoint provides options for paging, sorting,

filtering, field selection and complex database queries using MongoDB-style JSON queries.

Usage:

GET /browse/{dataset-uuid}

Parameters:

- query The filter query
- sort Specify fields on which to sort the data. Sort fields should be specified as a comma separated

list. Data will be sorted in ascending order. To specify a field to sort in descending order precede that
field with a minus ('-')

- fields Specify which fields to return. Fields should be specified as a comma separated list. Fields
preceded with a minus ("-") will be excluded from the results. The "_id" field is always returned,
unless explicitly excluded.

- pagesize Specify page size (defaults to a page size of 100)
- page Specify the page number of results to return (defaults to page 1)

Example request

curl -X GET "https://api2.mksmart.org/browse/123456789?sort=id&fields=id,value&pagesize=5&page=1" -H
"accept: */*" -H "Authorization: Basic dGVzdDp0ZXN0"

OBJECT

The object endpoint is used for standard CRUD-style database operations; reading, writing, updating

and deleting. The HTTP method used (GET/POST/UPDATE/DELETE) defines which function is called.

Usage:

GET /object/{dataset-uuid} Retrieve documents from the dataset

Parameters

https://api2.mksmart.org/

SPICE GA 870811 D6.4 APIs Specifications – v1.0 – 26/04/2022

13

- query The filter query
- limit Limit the number of documents retruend (defaults to 100)

POST/object/{dataset-uuid} Create a new document in the dataset

GET /object/{dataset-uuid}/{doc-id} Retrieve a single document from the dataset

PUT /object/{dataset-uuid}/{doc-id} Update a document by ID

DELETE /object/{dataset-uuid}/{doc-id} Delete a document by ID

Example requests

Retrieve the most recent 5 objects from dataset 123456789:

curl -X GET "https://api2.mksmart.org/object/123456789?limit=5" -H "accept: */*" -H "Authorization: Basic
dGVzdDp0ZXN0"

Post a new object to dataset 123456789:

curl -X POST "https://api2.mksmart.org/object/123456789" -H "accept: */*" -H "Authorization: Basic
dGVzdDp0ZXN0" -H "Content-Type: application/json" -d "{\"_id\":\"1067\",\"attribute1\":\"42-
a\",\"attribute2\":34.7}"

Retrieve object 1001 from dataset 123456789:

curl -X GET "https://api2.mksmart.org/object/123456789/1001" -H "accept: */*" -H "Authorization: Basic
dGVzdDp0ZXN0"

Update object 1001 in dataset 123456789:

curl -X PUT "https://api2.mksmart.org/object/123456789/1001" -H "accept: */*" -H "Authorization: Basic
dGVzdDp0ZXN0" -H "Content-Type: application/json" -d "{\"_id\":\"1067\",\"attribute1\":\"42-
a\",\"attribute2\":34.7}"

Delete object 1001 from dataset 123456789:

curl -X DELETE "https://api2.mksmart.org/object/123456789/1001" -H "accept: */*" -H "Authorization: Basic
dGVzdDp0ZXN0"

FILE

This API endpoint is used to manage binary files within a dataset.

Usage:

GET /file/{dataset-uuid} Retrieve a list of files for a single dataset

POST/file/{filename} Upload a new file

Parameters (supplied as multipart/form-data)

- title File title
- description File description
- file The binary file

SPICE GA 870811 D6.4 APIs Specifications – v1.0 – 26/04/2022

14

GET /file/{filename}/{doc-id} Retrieve a single file

POST/file/{filename}/{doc-id} Update an existing file

Parameters (supplied as multipart/form-data)

- title File title
- description File description
- file The binary file

DELETE /file/{filename}/{doc-id} Delete a file

Example requests

Retreive a list of files for dataset 123456789

curl -X GET "https://api2.mksmart.org/file/123456789" -H "accept: */*" -H "Authorization: Basic
dGVzdDp0ZXN0"

Upload a new file to dataset 123456789

curl -X POST "https://api2.mksmart.org/file/123456789" -H "accept: */*" -H "Authorization: Basic
dGVzdDp0ZXN0" -H "Content-Type: multipart/form-data" -F "title=Image Title" -F "description=Image
Description" -F "file=@myImage.jpg;type=image/jpeg"

Retrieve myImage.jpg from dataset 123456789

curl -X GET "https://api2.mksmart.org/file/123456789/myImage.jpg" -H "accept: */*" -H "Authorization:
Basic dGVzdDp0ZXN0"

Update myImage.jpg in dataset 123456789

curl -X POST "https://api2.mksmart.org/file/123456789/myImage.jpg" -H "accept: */*" -H "Authorization:
Basic dGVzdDp0ZXN0" -H "Content-Type: multipart/form-data" -F "title=New Title" -F "description=New
Description" -F "file=@myImage.jpg;type=image/jpeg"

Delete image myImage.jpg from dataset 123456789

curl -X DELETE "https://api2.mksmart.org/file/123456789/myImage.jpg" -H "accept: */*" -H "Authorization:
Basic dGVzdDp0ZXN0"

SPARQL

The SPICE Linked Data Hub API primarily operates with data in JSON format. However, all data that is pushed
into the LDH is also replicated to RDF graphs so that it can be queried as linked data, using SPARQL. This API
endpoint provides the facility to use read-only SPARQL queries against data stored within the LDH.

Usage:

/query/{dataset-uuid}/sparql

SPICE GA 870811 D6.4 APIs Specifications – v1.0 – 26/04/2022

15

Parameters

- query The SPARQL query string (URL encoded)

Example request

This SPARQL query ...

SELECT * WHERE { ?s ?p ?o } LIMIT 5

... would be made on dataset 123456789 using the following HTTP request:

curl -X GET

"https://api2.mksmart.org/query/123456789/sparql?query=SELECT%20%2A%20WHERE%20%7B%20%3Fs%
20%3Fp%20%3Fo%20%7D%20LIMIT%205" -H "accept: application/sparql-results+json" -H "Authorization:
Basic dGVzdDp0ZXN0"

The results format can be chosen by passing an Accept header with the HTTP request. The following header
values are supported:

- application/sparql-results+json
- application/sparql-results+xml
- text/csv
- text/tab-separated-values

2.4.2 Management operations
DATASETS

Used for managing datasets within the API.

Usage:

GET /management/datasets Retrieve a list of all datasets

POST /management/datasets Create a new dataset
Parameters (supplied in the request body):

- dataset-uuid The ID of the new dataset
- key The initial key to assign for use with this dataset which will be given read/write access. The key

will be created if it does not already exist.

GET /management/datasets/{dataset-uuid} Retrieves a single dataset summary, including the
number of documents in that dataset

Example requests

Retreive a list of datasets

curl -X GET "https://api2.mksmart.org/management/datasets" -H "accept: */*" -H "Authorization: Basic
dGVzdDp0ZXN0"

Create a dataset with id 123456789 using key key-001

curl -X POST "https://api2.mksmart.org/management/datasets" -H "accept: */*" -H "Authorization: Basic
dGVzdDp0ZXN0" -H "Content-Type: application/x-www-form-urlencoded" -d "dataset-
uuid=123456789&key=key-001"

SPICE GA 870811 D6.4 APIs Specifications – v1.0 – 26/04/2022

16

Retreive details for dataset 123456789

curl -X GET "https://api2.mksmart.org/management/datasets/123456789" -H "accept: */*" -H
"Authorization: Basic dGVzdDp0ZXN0"

PERMISSIONS

Used for creating, assigning and managing key permissions on datasets

Usage:

GET /management/permissions Retrieve all permissions

GET /management/permissions/{key} Retrieve all permissions for a single key

POST /management/permissions/{key} Set/update permissions. If the key specified does not already
exist, it will be created

Parameters (supplied in the request body):

- dataset-id The ID of the new dataset to set permissions on
- read Whether this key should have read permission – set to 0 or 1
- write Whether this key should have write permission – set to 0 or 1

Example requests

Assign key key-001 read and write permissions to dataset 123456789

curl -X POST "https://api2.mksmart.org/management/permissions/key-001" -H "accept: */*" -H
"Authorization: Basic dGVzdDp0ZXN0" -H "Content-Type: application/x-www-form-urlencoded" -d "dataset-
id=123456789&read=1&write=1"

Assign key key-001 read-only permission to dataset 123456789

curl -X POST "https://api2.mksmart.org/management/permissions/key-001" -H "accept: */*" -H
"Authorization: Basic dGVzdDp0ZXN0" -H "Content-Type: application/x-www-form-urlencoded" -d "dataset-
id=123456789&read=1&write=0"

Remove all permissions for key key-001 on dataset 123456789

curl -X POST "https://api2.mksmart.org/management/permissions/key-001" -H "accept: */*" -H
"Authorization: Basic dGVzdDp0ZXN0" -H "Content-Type: application/x-www-form-urlencoded" -d "dataset-
id=123456789&read=0&write=0"

2.5 OpenAPI Specification
The LDH-API has been built with an OpenAPI specification. By doing so, a number of tools become available
that can automatically interpret the specification and generate resources to speed up the use and adoption
of the API by application developers. These resources include automatically web interfaces and automatically
generated API clients in a number of programming languages.

The LDH-API uses a dynamically generated OpenAPI specification that is dependent on any addon modules
that are currently being used. In addition to the core API software, the SPICE LDH-API also makes use of the
optional SPARQL addon, as detailed in the API metadata table above.

SPICE GA 870811 D6.4 APIs Specifications – v1.0 – 26/04/2022

17

A static version of the full OpenAPI 3.0.1 specifications in JSON format has been materialised for the purposes
of this report, based on v0.8.4 of the main API software and version v0.1.6 of the SPARQL addon. These are
available within the main API repository for the user operations and management operations in the following
file locations:

/module/apif-core/view/apif/core/index/swagger-config-main.json

/module/apif-core/view/apif/core/index/swagger-config-management.json

The permanent link for the repository as of the release of this report is available here:

https://doi.org/10.5281/zenodo.6108050

3 User Model API
3.1 Description of the system
The purpose of the User Model (UM) is to store information about the user so that it can be reasoned about
in uniform way, for use in the community model and the case study application. It can also be used to guide
scripts and post-analysis.

The developer is exposed to a number of data objects (Users, User Properties, User Generated Content, User
History) which can be accessed by basic CRUD (Create, Read, Update, Delete) functionality. The API provides
examples how to derive User Model properties from user interactions and user-generated content.

For information about design principles see D3.1 and D3.3 documents

A typical scenario could be the following: content is shown to the user, s/he then writes something, this is
analyzed by the Semantic Analyzer (cf. D3.2), the values derived are stored in the User Model for further use
by the Community Model. To show the next bit of content the Social Recommender is used, (whose actions
are based on the Community & User Models)

The User Model is currently used in the Hecht Case Study. It is used for two applications: 1) A student
application which guides them through activities both prior to the visit, during the Museum visit and post the
museum visit. 2) A teacher/researcher application which allow the teacher/researcher to examine the results
and have some basic analysis performed

For more details see deliverable D3.3

3.2 Metadata
Id UM-API

Name User Model API

description

Type API

release-date 01/05/22

release-number 2.0

work-package WP3

Pilot

keywords User Model, User Profile, REST

changelog

https://doi.org/10.5281/zenodo.6108050

SPICE GA 870811 D6.4 APIs Specifications – v1.0 – 26/04/2022

18

Licence Apache Licence 2.0

release-link

Image

Logo none

demo User Model Demo, Hecht Use Case

Links

running-instance

credits Alan J. Wecker (ajwecker@gmail.com) Tsvika Kuflik
(tsvikak@is.haifa.ac.il)

related-components

bibliography See D3.3

3.3 Guide for developers
In general, the flow is that the user interface (UI) stores a number of User History (UH) items, these can be
used to create User Generated Content (UGC). These are analyzed by the Semantic Analyzer (SA) to create
User Model Properties (UM). Alternatively, UM properties can be created directly from UH items.

See D3.3 for further detailed information.

user-controller

Usage:

POST /api/v2/users2Create - Create a new user. Note: ID should be anonymized

Parameters:

- No parameters

Request body

- User – see Schema (note: propertiesCount, ugcCount, userHistoryCount are not needed as
they are derived values)

Returns
- OK – 200

GET/api/v2/users2 - Get all users, sorted by name

Parameters:
- No parameters

Request Body:
- None

Returns
- 200 – OK – Returns an array of Users

mailto:ajwecker@gmail.com
mailto:tsvikak@is.haifa.ac.il
http://localhost:8080/swagger-ui/index.html#/user-controller/getAllUsers

SPICE GA 870811 D6.4 APIs Specifications – v1.0 – 26/04/2022

19

DELETE/api/v2/users2Delete/{userid} - Remove a user by userid

Parameters:

- Userid

u-history-controller

Usage:

PUT /api/v2/uhistoryUpdate/{userid} - Update a specific uhistory for a specific user

Parameters:

- Userid

Request Body:

- UHistory

POST /api/v2/uhistoryCreate/{userid} - Add a new uhistory for a user
Parameters:

- Userid

Request Body:

- UHistory

Returns:

- None

GET /api/v2/uhistoryGetAllByUserid/{userid} - Get all properties for a specific user
Parameters:

- Userid

Returns:

- UHistory

GET /api/v2/uhistoryGetAllByPname/{pname} - Get all properties with a certain

uhistory name

Parameters:

- Pname - Property name

Request Body:

- None

Returns:

- UHistory

GET /api/v2/uhistoryGet/{userid}/{pname} - Get a uhistory for a user with a

specific name

Parameters:

- Userid
- Pname

http://localhost:8080/swagger-ui/index.html#/user-controller/deleteUser

SPICE GA 870811 D6.4 APIs Specifications – v1.0 – 26/04/2022

20

Request Body:

- None

Returns:

- Array of UHistory

DELETE /api/v2/uhistoryDelete/{userid}/{pname} - Delete a specific uhistory for a

specific user

Parameters:

- Userid
- Pname – property name

Request Body:

- None

Returns:

- Array of UHistory

property-controller

Usage:

POST /api/v2/propertyCreate/{userid} - Add a new property for a user

Parameters:

- Userid: string
- Pname: string – property name

Request Body:

- Schema of Property

Returns:

- None

GET /api/v2/propertyGetAllByUserid/{userid} - Get all properties for a specific user

Parameters:

- Userid

Request Body:

- None

Returns:

- Array of Property

GET /api/v2/propertyGetAllByPname/{pname} - Get all properties with a certain

property name

Parameters:

- Pname – property name

SPICE GA 870811 D6.4 APIs Specifications – v1.0 – 26/04/2022

21

Request Body:

- None

Returns:

- Array of Property

GET /api/v2/propertyGet/{userid}/{pname} - Get a specific property for a specific

user

Parameters:

- Userid
- Pname – property name

Request Body:

- None

Returns:

- Property

DELETE /api/v2/propertyDelete/{userid}/{pname} - Delete a property for a specific user

Parameters:

- Userid
- Pname – property name

Request Body:

- None

Returns:

- None

user-generated-content-controller

Usage:

POST /api/v2/ugcCreate/{userid} - Add a new User Generated Content for a user

Parameters:

- Userid

Request Body:

- UGC

Returns:

- None

GET /api/v2/ugcGetByUseridAndName/{userid}/{ugcname} - Get UGC for a specific user
Parameters:

- Userid
- Ugcname – ugc type name

SPICE GA 870811 D6.4 APIs Specifications – v1.0 – 26/04/2022

22

Request Body:

- None

Returns:

- UGC

GET /api/v2/ugcGetAllByUserid/{userid} - Get all UGC for a specific user

Parameters:

- Userid

Request Body:

- None

Returns:

- Array of UGC

3.4 Schemas
User

source String – Where was this info taken

context String – Under what circumstances

id integer($int64)

userid string

password string

ptype String – participation type

role String - (e.g. visitor, curator)

propertiesCount integer($int64) - Derived number of user model
properties

ugcCount integer($int64) - Derived number of user generated
content

getuHistoryCount integer($int64) - Derived number of user history
items

UHistory

source string

context string

id integer($int64)

userid string

pname String- Property name

pvalue String – Property Value

SPICE GA 870811 D6.4 APIs Specifications – v1.0 – 26/04/2022

23

Property

source String: From which ugc derived

context application

id integer($int64)

userid String: from user db

pname String: property name from ontology

pvalue String: property value from ontology

datapoints integer($int32)

origin String: what artifact is this talking about

UserGeneratedContent

source string

context string

id integer($int64)

userid string

parentname String- name of parent ugc if this is a comment to
comment

parenttype String – what type of media was parent

contentType String – what is media type of this entry

ugcname String – Generic Name of entry

ugcimage String – If UGC contains image hled here

ugctags String – User provided tags concerning ugc

ugcdesc String – Written description of UGC passed to SA

ugcmeta String – Explicit structured info by user about ugc

SPICE GA 870811 D6.4 APIs Specifications – v1.0 – 26/04/2022

24

4 Community Model API
4.1 Description of the system
The Community Model API (CM-API) is the access point to the Community Model, which supports the social
cohesion across groups, by the understanding of their differences and recognizing what they have in
common. The community model is responsible for storing information about explicit communities that users
belong to. Additionally, it creates the implicit communities inferred from user interactions and it computes
the metrics needed to define the similarity (and dissimilarity) among group of users. The Community Model
will support the recommender system in the variety and serendipity to the recommendation results, that will
not be oriented to the typically popular contents or based on providing “more of the same” similar contents
to the users (the so called, filter bubble) but to the inter-group similarities and the intra-group differences.

The CM-API exposes a set of REST-based operations for accessing information about implicit and explicit
communities, as well as endpoints for operations related to similar and dissimilar communities. CM-API is
also employed by the User Model to notify changes in user attributes and the creation of new user generated
content. The CM-API acts as a façade that hides the modules that appear in figure 4.1.1

The CM-API primarily works using the community data stored in a Document Database implemented using
MongoDB2. The access to this database is implemented using a Data Access Object (DAO) pattern3, so it
isolates the details for accessing the database. The information stored in the database is generated by the
Community Model, described in Deliverables D3.3 and D3.5.

The CM-API is also responsible for supplying the Community Model with all the data about the users within
the system. When a new user arrives at the SPICE infrastructure, the User Model notifies and provides the
CM-API with the data provided by the user. Additionally, when a user contributes with interactions that are
interesting according to the design of the SPICE case studies (interactions with museum items and concepts),
the User Model will send these interactions to the Community Model using the CM-API. The Community
Model is responsible for managing this new user data, updating the communities for the case study and store
them in the database. This way, updated information about the communities will be accessible through the
CM-API.

The CM-API will support the recommender system for accessing to the inter and intra group similarities and
differences. CM-API will not be only used to know which communities a user belongs to, but also to retrieve
de most similar o dissimilar communities to a given one. This information is not computed by the CM-API but
created and stored by the community model and retrieved from the database.

Figure 4.1.1. Overview of the CM-API infrastructure.

2 https://www.mongodb.com/
3 https://www.oracle.com/java/technologies/dataaccessobject.html

SPICE GA 870811 D6.4 APIs Specifications – v1.0 – 26/04/2022

25

4.2 Metadata
id CM-API

name Community Model API

description API for accessing data generated by the Community Model and for
updating user data used by the Community Model for finding
communities

type API

release-date 01/03/2022

release-number v.1.1

work-package WP3

pilot

keywords Community detection, clustering, REST.

changelog

licence Apache Licence 2.0

release-link

image

logo

demo

links https://app.swaggerhub.com/apis-docs/gjimenezUCM/SPICE-
CommunityModelAPI/v.1.1 (Documentation)

http://spice.fdi.ucm.es/ (Documentation)

http://spice.fdi.ucm.es/v1.1 (API)

https://github.com/spice-h2020/community-model-api (Main code
repository)

running-instance http://spice.fdi.ucm.es/

credits Guillermo Jiménez Díaz (gjimenez@ucm.es), Jose Luis Jorro
Aragoneses (jljorro@ucm.es), Belén Díaz Agudo (belend@ucm.es)

related-components UM-API

bibliography

4.3 Guide for developers
The following is an overview of API functions. Full OpenAPI specification is also referenced in the OpenAPI
specification section below.

Source code repository contains a suite of integration tests that verifies that all the API functions are working
correctly according to it OpenAPI specification.

The API is made up of three entry points with their corresponding operations:

4.3.1 Community operations
A read-only API endpoint for retrieving data about the communities.

https://app.swaggerhub.com/apis-docs/gjimenezUCM/SPICE-CommunityModelAPI/v.1.1
https://app.swaggerhub.com/apis-docs/gjimenezUCM/SPICE-CommunityModelAPI/v.1.1
http://spice.fdi.ucm.es/
http://spice.fdi.ucm.es/v1.1
https://github.com/spice-h2020/community-model-api
http://spice.fdi.ucm.es/
mailto:gjimenez@ucm.es
mailto:jljorro@ucm.es
mailto:belend@ucm.es

SPICE GA 870811 D6.4 APIs Specifications – v1.0 – 26/04/2022

26

Usage:

GET /communities

Access to a list of the all the communities in the community model

Parameters

 None

Responses

A list with the communities contained in the community model. Every community is represented in an object
with the following attributes:

• id: Unique id for the community in the community model

• name: Community name (for explicit communities)

• explanation: Community description (maybe empty). It can be computed by the explanation
module from the Community Model or it can be provided by curators when defining explicit
communities.

• community-type: Type of community (implicit or explicit). Implicit communities are computed by
the community model. Explicit communities are provided by the user model.

• users: A list with the user ids who belong to the community.

Example request

curl -X GET "http://spice.fdi.ucm.es/v1.1/communities"

GET /communities/{community-id}

Returns information about a community

Parameters

 None

Responses

An object with information about the requested community.

A response with status 400 is generated if the community model does not store any community with this
community id.

Example request

curl -X GET "http://spice.fdi.ucm.es/v1.1/communities/621e53cf0aa6aa7517c2afdd"

GET /communities/{community-id}/users

Returns a list with the ids of the users who belong to a community.

Parameters

 None

Responses

A list of user ids (cannot be empty).

A response with status 400 is generated if the community model does not contain any community with this
community id.

Example request

SPICE GA 870811 D6.4 APIs Specifications – v1.0 – 26/04/2022

27

curl -X GET

http://spice.fdi.ucm.es/v1.1/communities/621e53cf0aa6aa7517c2afdd/users

4.3.2 User operations
This endpoint provides GET/POST operations for requesting the communities that a user belongs to and
updating data about user attributes and user generated content.

GET /users/{user-id}/communities

Returns a list with the communities that the user belongs to.

Parameters

 None

Responses

A list of objects with information about the communities that the user belongs to (cannot be empty).

A response with status 400 is generated for invalid user ids.

Example request

curl -X GET "http://spice.fdi.ucm.es/v1.1/users/23/communities"

POST /users/{user-id}/update-generated-content

This service is employed to inform the Community Model about the User Generated Content (UGC) updated
in the User Model.

Request Body

A list with UGC objects that represent the information about the user that will be added to the community
model. Every UGC follows the schema provided by the User Model (User Generated Content Schema in
section Errore. L'origine riferimento non è stata trovata.) is represented in an object with the following
attributes:

• id: Unique id for the UGC in the user model

• userid: Unique user id

• origin: Unique id for the item or concept in the museum that this user generated content refers
to.

• source_id: Unique id for the UGC that this content is derived from.

• source: Description about the UGC that this content is derived from.

• pname: Name of the property included in this UGC.

• pvalue: Value of the property included in this UGC.

• context: Context of the property included in this UGC.

• datapoints: Number of datapoint used to generate this UGC

Only (id, userid, origin, source_id, pname, pvalue) are mandatory required.

Responses

A response with status 400 is generated if the user-id in the url differs from any userid in the objects
contained in the list in the body request.

If correct, an empty response with status 204 is generated.

Example request

• curl -d '[{"id":"12345","userid":"23","origin":"14294","source_id":"1893","source":"content
desc","pname":"DemographicGender","pvalue":"F","context":"application

http://localhost:3000/communities/621e53cf0aa6aa7517c2afdd/users

SPICE GA 870811 D6.4 APIs Specifications – v1.0 – 26/04/2022

28

P:DemographicsPrep","datapoints":0}]' -H "Content-Type: application/json" -X POST
"http://spice.fdi.ucm.es/v1.1/users/23/update-generated-content"

4.3.3 Similarity operations
A read-only API endpoint for retrieving information about similarity and dissimilarity between communities.

Usage:

GET /communities/{community-id}/similarity

Returns a list with the k most similar communities to the chosen one in the community model.

Parameters

 k: Size of the result (k most similar communities).

Responses

A list with the similarity scores between the parameter community and the k-most similar communities, in
descending order. Every similarity score is represented in an object with the following attributes:

• target-community-id: Unique id for the community parameter in the community model

• other-community-id: Unique id for another community in the community model

• value: Similarity value between the specified communities.

• similarity-function: similarity function employed to compute this similarity score.

A response with status 400 is generated if the community model does not contain any community with this
community id.

Example request

curl -X GET

"http://spice.fdi.ucm.es/v1.1/communities/621e53cf0aa6aa7517c2afdd/similarity?k=

5"

GET /communities/{community-id}/similarity/{other-community-id}

Returns the similarity score between two communities.

Parameters

 None

Responses

A similarity score object. The similarity score is always 1.0 if both communities are the same.

A response with status 400 is generated if the community model does not contain any community with any
of the community ids contained in the URL.

Example request

curl -X GET

"http://spice.fdi.ucm.es/v1.1/communities/621e53cf0aa6aa7517c2afdd/similarity/72

1e53cf0aa6aa7517c2afdd"

GET /communities/{community-id}/dissimilarity

Returns a list with the k most dissimilar communities to the chosen one in the community model.

Parameters

 k: Size of the result (k most similar communities).

SPICE GA 870811 D6.4 APIs Specifications – v1.0 – 26/04/2022

29

Responses

A list with the dissimilarity scores between the parameter community and the k-most dissimilar communities,
in descending order. Every dissimilarity score is represented in an object with the following attributes:

• target-community-id: Unique id for the community parameter in the community model

• other-community-id: Unique id for another community in the community model

• value: Dissimilarity value between the specified communities.

• similarity-function: dissimilarity function employed to compute this dissimilarity score.

A response with status 400 is generated if the community model does not contain any community with this
community id.

Example request

curl -X GET

"http://spice.fdi.ucm.es/v1.1/communities/621e53cf0aa6aa7517c2afdd/dissimilarity

?k=5"

GET /communities/{community-id}/dissimilarity/{other-community-id}

Returns the dissimilarity score between two communities.

Parameters

 None

Responses

A dissimilarity score object. The dissimilarity score is always 0.0 if both communities are the same.

A response with status 400 is generated if the community model does not contain any community with any
of the community ids contained in the url.

Example request

curl -X GET

"http://spice.fdi.ucm.es/v1.1/communities/621e53cf0aa6aa7517c2afdd/dissimilarity

/721e53cf0aa6aa7517c2afdd"

4.4 OpenAPI Specification
CM-API uses a dynamically generated OpenAPI specification. A static version of the full OpenAPI 3.0.1
specifications in YAML format has been materialised for the purposes of this report, based on v1.1 of the CM-
API. It is available within the CM-API repository in the following file location:

http://spice.fdi.ucm.es/openapi.yaml

5 SPICE Semantic Annotator API
5.1 Description of the system
Spice Semantic Annotator (SSA) is an annotation service for the semantic enrichment of textual contents,
targeting user generated contents as well as descriptions of museum artifacts. The service is multilingual and
supports English, Finnish, Hebrew, Italian and Spanish. It consists of a natural language processing pipeline
that performs Sentiment Analysis, Emotion Detection and Entity Linking.

The process of semantic annotation is realized by a Natural Language Processing Pipeline that includes
different analysis modules, each one responsible for annotating the document with respect to a specific
aspect: sentiment analysis, emotion detection, entity linking. The overall process is exposed by means of

http://spice.fdi.ucm.es/openapi.yaml

SPICE GA 870811 D6.4 APIs Specifications – v1.0 – 26/04/2022

30

standard RESTful1 APIs and produces a JSON-LD2 document as output. JSON-LD is a JSON-based serialization
for Linked Data that can be seamlessly stored in the Linked Data hub of WP4.

SSA analyses textual contents collected from museum visitors interacting with the activities scripted in the
interfaces (WP5) and realized for the different use cases (WP7). The service annotates contents with respect
to the ontological models developed in WP6 and generates as output an RDF graph to be stored in the linked
data hub developed by WP4. Such analysis puts the visitor at the centre by interpreting and then enhancing
his point of view and contributes to:

• the process of defining profiles of each visitor in order to build Community Models (the profiles and
models are generated by task 3.1).

• the design of an advanced recommendation engine (task 3.3)

The whole pipeline is designed following a Microservice Architecture3 approach in order to isolate and
decouple the different analysis modules implementing them with different technologies (e.g. Java, Python,
R), and exploiting a wide variety of models and solutions available on the open source. The pipeline is
deployed as a Microservice Architecture on a Kubernetes4 cluster with the replication of the analysis
components managed by KEDA5.

• Kubernetes is an open-source system for automating deployment, scaling, and management of
containerized components (e.g., Docker6 images).

• KEDA instead is a single-purpose and lightweight component that can be added into any Kubernetes
cluster and acts as a Kubernetes-based Event Driven Autoscaler; with KEDA it is possible to configure
the scaling (up and down) of any container in Kubernetes based on the number of events needing to
be processed.

Such architectural solutions were chosen in order to achieve horizontal scalability. In particular, we (1)
increase the instances of a given component when the number of documents waiting to be processed
exceeds a certain threshold and decrease their number when they go below the threshold. This approach
allows us to ensure service response time regardless of the system workload and to reduce economic and
energetic costs by dismissing computational resources when they are not needed.

The whole system is deployed to AWS7 cloud resources, on servers located in the European region. The
architecture and layout of the service is provided below in figure 5.1.1.

SPICE GA 870811 D6.4 APIs Specifications – v1.0 – 26/04/2022

31

Figure 5.1.1. SPICE Semantic Annotator Architecture

This section describes SSA API detailing about its input, output and usage. The service is exposed through
standard REST API behind a Basic Authentication18 scheme. The service can be accessed at the URL:
https://sophia42-demo.aws.celi.it/<LANGCODE>/spice/analysis

<LANGCODE> is a path parameter and it is used to specify the language content, the supported values are:

- en

- es

- fi

- it

- he

The service can be accessed with:

 POST requests: accepting a json document as input, with the following properties:
○ content: mandatory - the textual contents to be analyzed
○ ns_prefix: optional - the prefix used for representing the textual content in the JSON-LD

response document, default value is "spice"
○ ns_uri: optional - the URI of the ontology used for representing the textual contents in

the JSON-LD document, default value is "https://w3id.org/spice/resource/"

○ collection: optional - a textual label representing the collection/museum/use case,
default value is "spice"

https://sophia42-demo.aws.celi.it/%3CLANGCODE%3E/spice/analysis
https://w3id.org/spice/resource/

SPICE GA 870811 D6.4 APIs Specifications – v1.0 – 26/04/2022

32

5.2 Metadata
id SSA

name SPICE Semantic Annotator API

description Final Version of SSA

type Rest API

release-date 24/02/2022

release-number 1.0

work-package WP3

pilot

keywords Semantic annotation of User Generated Contents

changelog

licence

release-link

image

logo

demo

links

running-instance

credits Alessio Bosca (alessio.bosca@h-farm.com)

related-components

bibliography

5.3 Guide for developers
An example API request to SSA service API, using curl19:

curl --user USR:PWD20 -X POST https://sophia42-demo.aws.celi.it/en/spice/analysis -H 'Content-
Type: application/json' -d '{"content":"I love Picasso'\''s Guernica but I am absolutely terrified by the
screaming horse!", "collection":"test"}'

SSA API request example via CURL

The same request expressed in python, using the popular requests21 lib:

import requests

def testService(text: str, lang: str) -> object:
 r = requests.post('https://sophia42-demo.aws.celi.it/'+lang+'/spice/analysis',
 json={"content":text, "collection":"test"},
 auth=('USR', 'PWD'))

mailto:alessio.bosca@h-farm.com
https://sophia42-demo.aws.celi.it/en/spice/analysis

SPICE GA 870811 D6.4 APIs Specifications – v1.0 – 26/04/2022

33

 print(r.json())

if __name__ == "__main__":
 testService("I love Picasso's Guernica, but I am absolutely terrified by the screaming horse!", 'en')

SSA API request example via Python

Please notice that USR and PWD MUST be substituted with a real authentication in order to access the API.

The Semantic Annotator exposes the NLP pipeline analysis results as a JSON-LD22 document. JSON-LD is a
method of encoding linked data using JSON. Linked Data is structured data which is interlinked with other
data so it becomes more useful through semantic queries. It builds upon standard Web technologies such as
HTTP, RDF and URIs. More details on the Linked Data Hub designed and deployed by WP4 can be found in
D4.1 Linked Data server technology: requirements and initial prototype.

The JSON-LD document contains two main sections:

 Context: detailing the ontologies used to describe data along with their prefix (used for compact
notations in the graph section)

 Graph: containing a set of RDF triples represented as JSON objects; in our case the textual contents
along with some metadata, followed by a set of annotations referencing the textual spans that can
be linked to an emotion, a sentiment value or an entity (within DBPedia knowledge graph)

The following image represents the service output for the input: “I love Picasso's Guernica, but I am
absolutely terrified by the screaming horse!”

 Figure 6.3.1. SSA JSON-LD output - @context section

SPICE GA 870811 D6.4 APIs Specifications – v1.0 – 26/04/2022

34

Figure 6.3.2. JSON-LD output - @graph Section

SPICE GA 870811 D6.4 APIs Specifications – v1.0 – 26/04/2022

35

In the LDH, a specific dataset for each museum is used to collect all users’ generated content related to a
specific use case. One of the parameters of SSA API consists of a label for the collection of the contents to be
analysed. If the value of the collection parameter refers to one of the museum use cases, then the JSON-LD
document is saved in a use case specific dataset, otherwise a fallback test dataset is used.

The following table details the museum specific collections along with the relative dataset UUID; the fallback
test dataset details are also reported at the end of the table.

Collection - Museum Use Case Dataset UUID in LDH

IMMA b3631f48-2657-4cd3-96fa-4887c6e0c63a

GAM 810d60a6-c7be-4299-be2e-c86d988f58ad

HECHT 4125ba0c-adbe-4b0b-a2ff-3a5dde29d088

MNCN 2ae73c0c-84ad-416c-b17b-23032a75f0ef

DMH 514c5676-2560-47a9-bab4-76ff42eb0b83

test 85c109bb-6090-4110-9422-79303183fae5

6 Social Recommender API
6.1 Description of the system
The purpose of this component is to provide social recommendations of user generated content to aid in the
implementation of the interpretation-reflection loop of WP2; primarily reflection. You can choose similar
viewpoints by different communities to engender inclusion and use different viewpoints by similar
communities to try and engender cohesion. The recommendations are based on similar and dissimilar views
of topics and subjects and material from both similar and dissimilar communities. Views of the subject are
collected by the Semantic Analyzer. This stored in the UM for use by the CM who generate similar and
dissimilar communities which is then used by the SR to provide recommendations.

The API consists of a single call which attempts to do as much as possible for the developer in providing
recommendations of user generated content. Communities can either be explicit or implicit

The idea is to give the script designer the possibility to find people who have common background but have
either a different or same opinion or alternatively people who think alike but have a different or same opinion

A typical scenario is that a recommendation of user generated content (opinion, curation and so on) is
requested. User generated content is chosen based on the analysis of the Semantic Analyser (similar or
dissimilar) it is then filtered by content belonging to users of certain communities.

A prototype demo is incorporated in the Hecht studentmgr demo.

For more detailed information See D3.6.

6.2 Metadata

id SR-API

name Social Recommender API

description Provide similar/dissimilar recommendations bases on
similar/disimilar communities

type API

SPICE GA 870811 D6.4 APIs Specifications – v1.0 – 26/04/2022

36

release-date 1-5-2022

release-number 1.0

work-package WP3

pilot Hecht studentmgr

keywords Social Recommender, De-polarization

changelog

licence Apache

release-link

image

logo

demo Hecht studentmgr

links

running-instance

credits Alan J. Wecker (ajwecker@gmail.com) Tsvika Kuflik
(tsvikak@is.haifa.ac.il)

related-components

bibliography See D3.6

6.3 Guide for developers
The API is called using a standard Spring Boot REST API call.

Recommendation-controller

Usage:

GET/api/v2/srecommend/{userid}/{subject} - Get recommendation for user

Parameters:

- userid - from UM
- subject - from use case ontology

Body:

- rconfig – see Schemas

Returns:

- Recommendation – see Schemas

6.4 API Schemas
RecommendationConfig

subjectSimilarity String {SA –same as, DF –Different From, DK - Don’t Care

communitySimilarity String {SA –same as, DF –Different From, DK - Don’t Care

numRecommendations integer($int32)

mailto:ajwecker@gmail.com
mailto:tsvikak@is.haifa.ac.il

SPICE GA 870811 D6.4 APIs Specifications – v1.0 – 26/04/2022

37

explicitCommunities [...]

implicitCommunities [...]

Recommendation

ugcid String {content id to retrieve}

explanation String {Why this recommendation given}

entrancement String {personalized enhancement why you might like this
recommendation}

7 Ontology server, query and reasoning services
The ontology server in the SPICE technical infrastructure runs via a virtual machine instance, within the
HPC4AI cloud infrastructure of the Department of Computer Science of the University of Turin
(https://hpc4ai.unito.it/), and managed through the OpenStack console (https://www.openstack.org/).

The server has a total volume storage of 500GB, a RAM of 256GB, an availability of 8VCPUs (currently the
SPICE virtual machine uses 4 VCPUs) and is equipped with the Ubuntu 18.04 operating system. It has an
external IP address reachable by other services via HTTP. The SPICE Server hosts and integrates the following
software components:

• OWL-API 5 (http://owlcs.github.io/owlapi/), a Java API and reference implementation for creating,
manipulating, serialising OWL Ontologies and using OWL Reasoners;

• HERMIT (http://www.hermit-reasoner.com/), a standard ontology-based reasoner used to infer
taxonomical and hidden relationships between elements from a knowledge base. The reasoner is
called externally via the OWL-API;

• ONT-API 2.0.0 (https://github.com/owlcs/ont-api), a java library for converting the OWL and OWL 2
ontologies (with the materialized inferences obtained through reasoning) in RDF-like graph models
stored as triples;

• JENA (https://jena.apache.org/index.html), an Apache framework for storing, manipulating and
accessing RDF graphs.

• Fuseki 2 (https://jena.apache.org/documentation/fuseki2/index.html) a SPARQL server of the
Apache family used to expose the Jena models (containing the inferred triples) to other services both
via a public interface (available at this address: http://130.192.212.225/fuseki/) and via SOH (SPARQL
Over HTTP): a set of server-independent command-line scripts for working with SPARQL 1.1 offering
HTTP access to external services. Fuseki 2 is hosted in a Tomcat Server to be exposed and reachable
on the Web. The overall architecture is illustrated in the figure 7.0.1 below.

https://hpc4ai.unito.it/
https://www.openstack.org/
http://owlcs.github.io/owlapi/
http://www.hermit-reasoner.com/
https://github.com/owlcs/ont-api
https://jena.apache.org/index.html
https://jena.apache.org/documentation/fuseki2/index.html
http://130.192.212.225/fuseki/

SPICE GA 870811 D6.4 APIs Specifications – v1.0 – 26/04/2022

38

Figure 7.0.1. Overview of the components of the Ontology Server and Reasoning Architecture

This architecture implements the following workflow:

1. An OWL/OWL 2 ontology (or a network of ontologies) is uploaded to the Ontology Server via OWL-
API1.

2. All the triples that can be deduced by the loaded ontology, which form the so called “inferred
ontology” are then derived by using a standard OWL reasoner (e.g., Hermit)2.

3. The inferred ontology is then transformed to graph model (which is the format suitable for enabling
querying via SPARQL). This is done by relying on the ONT-API framework, which transforms the
inferred model into graph model compatible with Jena and Fuseki frameworks.

4. The model is automatically loaded in the Fuseki 2 SPARQL server available for querying at
http://130.192.212.225/fuseki/

We will detail below, step by step, how the different components are integrated by using a running example
about a toy knowledge base (called “arte”) loaded, reasoned and exposed in a SPARQL endpoint as a turtle
file (.ttl extension). The example will be discussed by providing the different pieces of code necessary to
activate the different components (the overall code provided in the example is available in the final
appendix).

7.1 Ontology Uploading and Reasoning calls via OWL-API (Steps 1-2)
An ontology, or a network of ontologies, can be uploaded to our ontology server via OWL-API as a file, or by
using an external IRI pointing to an OWL ontology. Since the uploading procedure via file can only be done
by the managers of the infrastructure (i.e., UNITO members) we have opted for the upload via an external
IRI, that is reachable and directly usable by any user of the project. The IRI from which it is possible to upload
the ontologies is: http://130.192.212.225/fuseki (the public address of the Fuseki 2 repository).

In the code shown below in figure 7.1.1, we show how an ontology stored at the IRI
http://130.192.212.225/fuseki/arte (where “arte” is the name of the newly created dataset in Fuseki 2
storing the “arte.ttl” ontology) is loaded via OWL-API and how an ontological reasoner (e.g., HERMIT) is
initialized by indicating the types of inferences we are interested in (e.g., CLASS_HIERARCHY,
CLASS_ASSERTIONS, DIFFERENT_INDIVIDUALS etc.).

http://130.192.212.225/fuseki/
http://130.192.212.225/fuseki
http://130.192.212.225/fuseki/arte

SPICE GA 870811 D6.4 APIs Specifications – v1.0 – 26/04/2022

39

Figure 7.1.1. Code excerpt for ontology uploading via external IRI and initialization of the reasoning
procedures

SPICE GA 870811 D6.4 APIs Specifications – v1.0 – 26/04/2022

40

7.2 Ontology Export as JENA Triple-based graph model (step 3)
In order to expose the reasoned ontologies in a format that is also accessible via SPARQL queries, it is
necessary to translate the OWL / OWL 2 ontology/ontologies in a JENA graph model. This service is provided
by the ONT-API library. In order to activate this translation, the following instruction (to be intended as a
continuation of the code illustrated in figure 7.1.1) is provided:

Model model = ((Ontology(o).asGraphModel();

It allows to generate and store the JENA Graph Model as a JAVA object. It is worth noticing that the Model
could also eventually be written into a file by providing this additional instruction:

model.write(FileOutputStream(new File(ReasonedArte.ttl)), “ttl”).

This possibility, however, is not currently used because it does not allow to automatically upload the JENA
model to the external SPARQL server (that is, on the other hand, what we aim to do).

7.3 External Exposure of the Graph Model in a SPARQL Server (step 4)
We upload the extracted JENA model to a Fuseki 2 SPARQL server. In Fuseki 2 it is possible to expose the
JENA models as different datasets in two different ways: in a manual way and in an automatic fashion.

The manual upload can be done by using the SOH function (SPARQL over HTTP functions)3 provided by Fuseki
2 or by manually uploading the file on the Fuseki 2 SPARQL graphical interface. SOH provides a set of Ruby
scripts runnable from command line (therefore it is necessary to install Ruby in order to run them).

In our example, for what concern the use of the “UPLOAD” SOH command it is sufficient to provide the
following PUT script to upload the file “ReasonedArte.ttl”:

s-put http://130.192.212.225/fuseki/arte default ReasonedArte.ttl

Alternatively, the file can be simply uploaded via the SPARQL graphical interface (see Figure 7.3.1), reachable
at http://130.192.212.225/fuseki/arte

Figure 7.3.1. SPARQL endpoint interface for the upload

As mentioned above, however, we decided to opt for a completely automatic upload of the JENA model
Graph Model (containing the inferred ontology) in Fuseki 2 (at the scope of making it available such model
via a reachable SPARQL endpoint).

http://130.192.212.225/fuseki/arte

SPICE GA 870811 D6.4 APIs Specifications – v1.0 – 26/04/2022

41

In order to do that, we used the RDF Connection component of JENA API4. This process is obtained by the
following instruction (in bold the new instructions with respect to the previous ones):

Figure 7.3.2. Automated export of the JENA Graph Model in the Fuseki 2 SPARQL Server via JENA API

This overall workflow allowed us to completely automate the connections between the ontology server and
the SPARQL one. As already mentioned, we opted for an upload of the ontology via OWL-API through an
external IRI. The external IRI provided to OWL-API resolves to the Fuseki repository reachable (in our
example) at the address http://130.192.212.225/fuseki/arte. Once the ontology is loaded in OWL-API, it goes
through the whole processes of reasoning, translation to JENA model, and automatic update of the Fuseki 2
repository without any manual intervention.

In the following we describe how to query and update (including inserts, deletes, updates) the Fuseki 2
exposed model by means of the services: SOH and RDF Connection. Query and update are also available
through the graphical interface.

7.4 How to QUERY and UPDATE the exposed Fuseki 2 Model with SOH
In order to query the exposed Fuseki 2 Model via SOH, it is sufficient to use the scripting instructions provided
here: https://jena.apache.org/documentation/fuseki2/soh.html.

For example: a simple query could be run via command line in the following way (see Figure 3.4.1 below).

4 https://jena.apache.org/documentation/rdfconnection/

http://130.192.212.225/fuseki/arte
https://jena.apache.org/documentation/fuseki2/soh.html
https://jena.apache.org/documentation/rdfconnection/

SPICE GA 870811 D6.4 APIs Specifications – v1.0 – 26/04/2022

42

./s-query —service=http://130.192.212.225/fuseki/arte 'SELECT ?s ?p ?o W

HERE { ?s ?p ?o . }’

Figure 7.4.1. Query of the FUSEKI 2 server via terminal with the SOH scripts.

By using SOH it is also possible to upload/modify the Fuseki 2 model via command line. For example, it is
possible to include additional information in our toy model about the artistic domain in the following way:

SPICE GA 870811 D6.4 APIs Specifications – v1.0 – 26/04/2022

43

Figure 7.4.2. This simple instruction allows adding that “La Vita” (La Vie) is a painting by Picasso.

7.5 How to QUERY and UPDATE the exposed Fuseki 2 Model with RDF Connection
In order to use RDF Connection for both SPARQL query and Model Updates, we need to first establish a
connection between the Fuseki 2 Server and the corresponding Model that we want to query/update. With
the RDFConnection interface, SPARQL operations can be performed on Fuseki remote datasets.

In order to activate an RDF Connection, it is necessary to include the instruction mentioned above and used
for the automatic upload of the JENA graph-model in Fuseki 2. The remote connection to the “arte” dataset
is provided as follows:

RDFConnectionRemoteBuilder builder = RDFConnectionFuseki.create()

.destination("http://130.192.212.225/fuseki/arte");

Once the connection is established, it is possible to use RDF connection to provide SPARQL Queries and Model
Updates on the Fuseki 2 Model.

For example: a query about the paintings of Picasso contained in the “arte” knowledge base can be executed
programmatically in this way:

Figure 7.5.1. SPARQL query execution on Fuseki 2 from an external application via RDF Connection

Similarly, the knowledge base can be updated by adding new information in this simple way:

SPICE GA 870811 D6.4 APIs Specifications – v1.0 – 26/04/2022

44

Figure 7.5.2. Knowledge update on Fuseki 2 from an external application via RDF Connection

Some insertions or deletions could be not compliant with the dictate of the ontological models. In case some
inconsistent information is added, the OWL-API component (that loads the ontology from the IRI we are
manipulating) can detect, using the launched reasoner, that the included information is inconsistent and
should be modified or deleted.

7.6 Graphical Interface
The same query and update/delete commands described in the SOH and the RDF Connection can be run
directly on the graphical interface of the Fuseki 2 SPARQL endpoint: http://130.192.212.225/fuseki (by
selecting the repository “arte”).

For example, it is possible to update the Fuseki Model (e.g., by adding an additional painting by Picasso called
“Example”), as exemplified in Figure 7.6.1 below.

http://130.192.212.225/fuseki

SPICE GA 870811 D6.4 APIs Specifications – v1.0 – 26/04/2022

45

Figure 7.6.1. Model update in Fuseki 2 via the graphical interface

SPICE GA 870811 D6.4 APIs Specifications – v1.0 – 26/04/2022

46

7.7 Source code
(Code illustrated in the running example, available at https://github.com/spice-h2020/SPICE-OntoServer)

//Ontology loading (OWL-API and ONT-API):

OWLOntologyManager man = OntManagers.createONT();

IRI arteIRI = IRI.create("http://130.192.212.225/fuseki/arte");

OWLOntology o = man.loadOntology(arteIRI);

//Reasoning calls (Hermit):

OWLReasonerFactory rf = new ReasonerFactory();

OWLReasoner r = rf.createReasoner(o);

r.precomputeInferences(InferenceType.CLASS_HIERARCHY);

r.precomputeInferences(InferenceType.CLASS_ASSERTIONS);

r.precomputeInferences(InferenceType.DISJOINT_CLASSES);

r.precomputeInferences(InferenceType.DIFFERENT_INDIVIDUALS);

r.precomputeInferences(InferenceType.OBJECT_PROPERTY_ASSERTIONS);

//Translation into Jena Model (Apache Jena and ONT-API):

Model model = ((Ontology)o).asGraphModel();

//SPARQL Graph Store Protocol "PUT" on remote Fuseki server (Jena RDF Connection)

RDFConnectionRemoteBuilder builder = RDFConnectionFuseki.create()

 .destination("http://130.192.212.225/fuseki/arte");

try (RDFConnectionFuseki conn = (RDFConnectionFuseki)builder.build()) {

 conn.put(model);

}

//Example of SPARQL Query on remote Fuseki server (Jena RDF Connection)

RDFConnectionRemoteBuilder builder = RDFConnectionFuseki.create()

 .destination("http://130.192.212.225/fuseki/arte");

Query query = QueryFactory.create(

 "PREFIX arte: <http://www.modsem.org/arte#> " +

 "SELECT ?opera " +

 "WHERE { arte:PabloPicasso arte:creatoreDi ?opera .}");

try (RDFConnectionFuseki conn = (RDFConnectionFuseki)builder.build()) {

 conn.queryResultSet(query, ResultSetFormatter::out);

}

//Example of SPARQL Update on remote Fuseki server (Jena RDF Connection)

RDFConnectionRemoteBuilder builder = RDFConnectionFuseki.create()

SPICE GA 870811 D6.4 APIs Specifications – v1.0 – 26/04/2022

47

 .destination("http://130.192.212.225/fuseki/arte");

try (RDFConnectionFuseki conn = (RDFConnectionFuseki)builder.build()) {

conn.update(

 "PREFIX : <http://www.modsem.org/arte#> " +

 "PREFIX owl: <http://www.w3.org/2002/07/owl#> " +

 "PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> " +

 "PREFIX xsd: <http://www.w3.org/2001/XMLSchema#> " +

 "INSERT DATA {" +

 " :LaVita rdf:type owl:NamedIndividual , " +

 " :Dipinto ; " +

 " :haTitolo \"La Vita\"^^xsd:string . " +

 " :PabloPicasso :creatoreDi :LaVita .\n" +

 "}");

 conn.queryResultSet(query, ResultSetFormatter::out);

}

8 Conclusions
This document presented and described the APIs that have been developed for use within the SPICE project
architecture. For each API we have detailed the specifications along with its intended purpose in relation to
SPICE work packages and any relevant design methodology employed.

The report includes a user guide for each API, describing how pilot application developers can make use of
the API’s functions and how to make use of and customise API parameters where appropriate. Example API
requests and code snippets are also supplied.

Many of these APIs are currently in a state of ongoing development. Where links to released versions and
OpenAPI specifications are made available, these reflect the interim development status at the time of
writing this report. Moving forwards into the third year of the project we will finalise the development of
these technologies, making final releases and full specifications available in D6.8.

