
   
 

   
 

This project has received funding from the European Union’s Horizon 2020 research and 
innovation programme under grant agreement No 870811 
 

 

 

D6.8 APIs Specification and Deployment 
 

Deliverable information 

WP WP6 

Document dissemination level PU Public 

Deliverable type R Document, report 

Lead beneficiary OU 

Contributors UNIBO, GVAM, PG, UCM, UNITO, CELI, UH, CNR  

Date 28/04/2023 

Document status Final 

Document version  V1.0 

 

 

Disclaimer: The communication reflects only the author’s view and the Research Executive Agency is not 
responsible for any use that may be made of the information it contains  



 
 
SPICE GA 870811  D6.8 APIs Specifications – v1.0 – 28/04/2023 
 
 

 
2 

 

 

 

INTENTIONALLY BLANK PAGE  



 
 
SPICE GA 870811  D6.8 APIs Specifications – v1.0 – 28/04/2023 
 
 

 
3 

Project information 
 

Project start date: 1st May 2020 

Project Duration: 36 months  

Project website: https://spice-h2020.eu  

Project contacts 
Project Coordinator 

Silvio Peroni  

ALMA MATER STUDIORUM - 
UNIVERSITÀ DI BOLOGNA 

Department of Classical 
Philology and Italian Studies – 
FICLIT 

E-mail: silvio.peroni@unibo.it 

 

Project Scientific coordinator 

Aldo Gangemi  

Institute for Cognitive Sciences 
and Technologies of the Italian 
National Research Council 

E-mail: aldo.gangemi@cnr.it 

 

 

Project Manager  

Adriana Dascultu 

ALMA MATER STUDIORUM - 
UNIVERSITÀ DI BOLOGNA 

Executive Support Services 

E-mail: 
adriana.dascultu@unibo.it  

SPICE consortium 
 

No. Short name Institution name Country 

1 UNIBO ALMA MATER STUDIORUM - UNIVERSITÀ DI BOLOGNA Italy 

2 AALTO AALTO KORKEAKOULUSAATIO SR Finland 

3 DMH DESIGNMUSEON SAATIO - STIFTELSEN FOR DESIGNMUSEET SR Finland 

4 AAU AALBORG UNIVERSITET Denmark  

5 OU THE OPEN UNIVERSITY United 
Kingdom 

6 IMMA IRISH MUSEUM OF MODERN ART COMPANY Ireland  

7 GVAM GVAM GUIAS INTERACTIVAS SL Spain 

8 PG PADAONE GAMES SL Spain 

9 UCM UNIVERSIDAD COMPLUTENSE DE MADRID Spain 

10 UNITO UNIVERSITA DEGLI STUDI DI TORINO Italy  

11 FTM FONDAZIONE TORINO MUSEI Italy 

12 MAIZE MAIZE SRL (Previously CELI SRL) Italy  

13 UH UNIVERSITY OF HAIFA Israel  

14 CNR CONSIGLIO NAZIONALE DELLE RICERCHE Italy 

  

mailto:silvio.peroni@unibo.it
mailto:aldo.gangemi@cnr.it
mailto:adriana.dascultu@unibo.it


 
 
SPICE GA 870811  D6.8 APIs Specifications – v1.0 – 28/04/2023 
 
 

 
4 

Executive summary   
 

SPICE is an EU H-2020 project dedicated to citizen curation of cultural heritage. To support citizen curation, 
the project research upon and develops an ecosystem of methods and tools co-designed by an 
interdisciplinary team of researchers, technologists, domain experts, and user communities.  

In Work Package 6, we design and implement the formal semantics for an integrated socio-technical system 
for citizen curation. WP6, jointly with WP4, aims at devising a technical research infrastructure to integrate 
multiple knowledge graphs and ontologies, a linked data social media layer, interface components, 
annotation software, recommendation systems, data mining tools, and models/methods devised by the 
SPICE work packages. 

In this deliverable, we report on the final specifications for APIs that have been developed and used in SPICE.  

  



 
 
SPICE GA 870811  D6.8 APIs Specifications – v1.0 – 28/04/2023 
 
 

 
5 

Document History 
 

Version Release date Summary of changes Author(s) -Institution 

V0.1 20/03/2023 Document structure preparation, template 
definition of APIs with instructions for 
contributors. 

Jason Carvalho (OU) 

V0.2 06/04/2023 API specifications updated by contributors All partners 

V0.3 11/04/2023 Final contributions made. Report sent for internal 
review. 

All partners 

V0.4 21/04/2023 Internal review comments processed and 
amendments made 

Jason  Carvalho (OU),  
Chukwudi Uwasomba 
(OU), Gautam 
Vishwanath (DMH) 

V0.5 26/04/2023 Final edits and formatting Jason Carvalho(OU), 
Enrico Daga (OU) 

V1.0 28/04/2023 Final version submitted to REA UNIBO 

 

  



 
 
SPICE GA 870811  D6.8 APIs Specifications – v1.0 – 28/04/2023 
 
 

 
6 

Table of Contents  
Project information ............................................................................................................................................ 3 

Project contacts .............................................................................................................................................. 3 

SPICE consortium ........................................................................................................................................... 3 

Executive summary ............................................................................................................................................ 4 

Document History .............................................................................................................................................. 5 

1 Introduction ................................................................................................................................................ 8 

2 SPICE Linked Data Hub API ......................................................................................................................... 9 

2.1 Description of the system ...................................................................................................................... 9 

2.2 Current applications and pilots ............................................................................................................ 10 

2.3 Metadata .............................................................................................................................................. 11 

2.4 Guide for developers ............................................................................................................................ 12 

2.4.1 User operations ............................................................................................................................ 12 

2.4.2 Management operations .............................................................................................................. 16 

2.5 OpenAPI Specification .......................................................................................................................... 17 

3 User Model API ......................................................................................................................................... 19 

3.1 Description of the system .................................................................................................................... 19 

3.2 Metadata .............................................................................................................................................. 19 

3.3 Guide for developers ............................................................................................................................ 19 

3.4 Schemas ................................................................................................................................................ 24 

4 Community Model API ............................................................................................................................. 26 

4.1 Description of the system .................................................................................................................... 26 

4.2 Metadata .............................................................................................................................................. 27 

4.3 Guide for developers ............................................................................................................................ 28 

4.3.1 Community operations ................................................................................................................. 28 

4.3.2 User operations ............................................................................................................................ 29 

4.3.3 Similarity operations .................................................................................................................... 30 

4.3.4 Perspective operations ................................................................................................................. 32 

4.3.5 VISIR operations ........................................................................................................................... 33 

4.3.6 Development operations.............................................................................................................. 34 

4.4 OpenAPI Specification .......................................................................................................................... 36 

5 SPICE Semantic Annotator API ................................................................................................................. 37 

5.1 Description of the system .................................................................................................................... 37 

5.2 Metadata .............................................................................................................................................. 39 

5.3 Guide for developers ............................................................................................................................ 39 

6 Social Recommender API ......................................................................................................................... 43 

6.1 Description of the system .................................................................................................................... 43 



 
 
SPICE GA 870811  D6.8 APIs Specifications – v1.0 – 28/04/2023 
 
 

 
7 

6.2 Metadata .............................................................................................................................................. 43 

6.3 Guide for developers ............................................................................................................................ 43 

6.4 API Schemas ......................................................................................................................................... 45 

7 Ontology server, query and reasoning services ....................................................................................... 46 

7.1 Ontology Uploading and Reasoning calls via OWL-API (Steps 1-2)...................................................... 47 

7.2 Ontology Export as JENA Triple-based graph model (step 3) .............................................................. 48 

7.3 External Exposure of the Graph Model in a SPARQL Server (step 4) ................................................... 48 

7.4 How to QUERY and UPDATE the exposed Fuseki 2 Model with SOH .................................................. 49 

7.5 How to QUERY and UPDATE the exposed Fuseki 2 Model with RDF Connection ............................... 50 

7.6 An overview of the API and workflow architecture for DEGARI GAMStories...................................... 52 

7.7 The workflow architecture for DEGARI GAMStories ............................................................................ 53 

7.8 Insert and update Fuseki with GAM stories  ........................................................................................ 54 

7.9 Dataset stored in the Linked Data Hub (LDH) ...................................................................................... 56 

7.10 Graphical Interface ............................................................................................................................... 56 

7.11 Source code .......................................................................................................................................... 58 

8 Conclusions ............................................................................................................................................... 59 

 

 

 

 

  



 
 
SPICE GA 870811  D6.8 APIs Specifications – v1.0 – 28/04/2023 
 
 

 
8 

 

1 Introduction 
SPICE is an EU H-2020 project dedicated to citizen curation of cultural heritage. To support citizen curation, 
the project research upon and develops an ecosystem of methods and tools co-designed by an 
interdisciplinary team of researchers, technologists, domain experts, and user communities.  

In Work Package 6, we design and implement the formal semantics for an integrated socio-technical system 
for citizen curation. WP6, jointly with WP4, aims at devising a technical research infrastructure to integrate 
multiple knowledge graphs and ontologies, a linked data layer, interface components, annotation software, 
recommendation systems, data mining tools, and models/methods devised by the SPICE work packages. 

In this deliverable, we describe the APIs that have been developed and released for use within the SPICE 
project architecture. These APIs are predominantly used by pilot applications to provide access to data 
storage and retrieval, linked data operations, ontologies and reasoning services. The report provides the final 
API specifications along with software repository links where available. This, together with D4.7 which 
describes the final version and deployment instructions for the SPICE Linked Data Hub, gives a complete 
overview of the structure, installation and use of the technologies and software platforms used within the 
SPICE project. 

The deliverable is structured as follows. For each API, this document introduces an overview of its intended 
purpose in relation to SPICE work packages and any relevant design methodology employed. This includes a 
report on how each API is currently being used within the SPICE project and, specifically, which pilot 
applications are making use of its features. Details of the technical underpinnings of the APIs are provided. 
Further background information on each API can be found in the dedicated deliverables, these are referenced 
in their corresponding sections. For each section, a guide for developers is made available that details the 
functions available within each API and how to use and configure them through the use of appropriate 
parameters. Example API requests and code snippets are provided. The APIs detailed in this report are the 
SPICE Linked Data Hub API, the User Model API, the Community Model API, the SPICE Semantic Annotator 
API and the Social Recommender API. While these components refer to systems already described in other 
deliverables, in Chapter 7 we present the Ontology Server as both system specification and running instance. 
As such, the chapter has a more detailed structure. Section 8 summarises and concludes the report.  

The contents of this report were presented in an interim state at the end of the second year of the project, 
in deliverable D6.4. The contents of this deliverable therefore extend D6.4; this deliverable being the final 
version of the specifications that were laid out a year ago, incorporating any developments to these 
technologies that have taken place since then. 

 

  



 
 
SPICE GA 870811  D6.8 APIs Specifications – v1.0 – 28/04/2023 
 
 

 
9 

2 SPICE Linked Data Hub API 
2.1 Description of the system  
The SPICE Linked Data Hub (LDH) was developed as a data infrastructure to support the acquisition and 
management of dynamic data from a variety of sources including: museum collection metadata and digital 
assets, social media events and user activities, systems’ activities (e.g., recommendations, reasoning 
outputs), ontologies and linked data produced by pilot case studies. 

The SPICE Linked Data Hub API is an instance of the API Factory software and underpins the functionality of 
the LDH Portal; the front-end web-interface component of the LDH. The LDH-API exposes a selection of REST-
based user operations for creating, managing and consuming data, as well as management functions which 
are used by the web portal for creating datasets and managing permissions. The API’s position within the 
wider LDH system is shown in Figure 2.1.1 

  

 

Figure 2.1.1: SPICE Linked Data Hub layout 

  

As well as forming the technical backbone of the LDH portal, the LDH-API offers direct access to data storage 
and retrieval functions for SPICE application and pilot developers, through a series of REST endpoints. Full 
documentation on these API functions with example requests are included below in the Guide for developers. 

The LDH-API operates primarily with JSON documents and makes use of MongoDB as its main data store. The 
LDH-API also supports storage and retrieval of files (binary and text-based) and associated metadata. Single 
datasets within the LDH can host a mixture of both JSON documents and binary files. 

Parallel to the JSON data store is a graph database. All data within the LDH-API is also replicated into this 
graph database as RDF and made available through the API via read-only SPARQL queries. 

Since deliverable D6.4, the main development to the LDH API has been the addition of the changes endpoint. 
As described in section 2.4, this enables dataset users to monitor when changes happen to datasets. This has 
been used by third party applications as a trigger to perform external processing operations on the updated 
data such as running data reasoning services or other change-driven processes such as replication and 
conversion to external linked data stores. Since the LDH API was required to be in place for the development 
of SPICE pilot applications, the bulk of the development was done in the early stages of the project. Year 



 
 
SPICE GA 870811  D6.8 APIs Specifications – v1.0 – 28/04/2023 
 
 

 
10 

three development of the LDH infrastructure has largely taken place on the LDH portal, described in detail in 
D4.7. 

   

2.2 Current applications and pilots 
There are currently around 30 SPICE datasets accessible via the API that have been collected in the context 
of the following pilots: 

  

• IMMA Viewpoints 
IMMA Viewpoints is a mobile web application that encourages visitors to share their own response 
to artworks within the grounds of the Irish Museum of Modern Art (IMMA). The IMMA Viewpoints 
web application makes use of the LDH-API for file storage if artwork images and uses the JSON store 
for application configuration and the collection, moderation and review of user responses. 
 

• IMMA Deep Viewpoints 
Deep Viewpoints builds on the original IMMA Viewpoints prototype, making use of the IMMA 
Collection dataset stored on the Linked Data Hub. With Deep Viewpoints users can add artworks 
from the IMMA collection to their own personal collections. Deep Viewpoints has a separate dataset 
for storing data added by the users. This includes: 

- personal artwork collections 
- scripts and themes 
- users and passwords 
- data generated when a user undertakes a script (e.g. answers to questions) 
- moderation status of contributions 

 

• InSpice 
A web framework for the creation of citizen curation activities within the different museums involved 
in SPICE. It proposes a template-based use model whereby museum curators can instantiate, manage 
and publish activities based on one of the templates provided by the framework. 
In this context, the LDH is used primarily as a storage, query and management space for the JSON 
files used to define specific instances of framework activities, as well as to access the various works 
and artefacts of the museums involved that already have an associated collection within the LDH. 

 

• Hecht Museum – Student Experience 
School students before, during and after a museum school trip at the Hecht Museum learn about 
their country’s history and at the same time learn about the diversity of opinions regarding historical 
and national issues. Students learn to interpret museum artefacts according to their own personal 
views, reflect upon other students’ opinions, connect their opinions with tangible artefacts at the 
museum, and perform citizen curation activities.  
The LDH infrastructure is used within this pilot for managing 5 major objects with basic CRUD (Create, 
Read, Update, Delete) operation: Users, User History, User Model Properties, User Generated 
Content and Sourced Content. 

 

• Design Museum Helsinki – Pop-up VR Museum 
The focus of the Design Museum Helsinki (DMH) Case Study is on developing the citizen curation 
methods by first gathering interpretations of DMH collection objects in workshops with selected end-
user communities, namely senior citizens, remote dwellers, and asylum seekers (D7.3, pg33). An 



 
 
SPICE GA 870811  D6.8 APIs Specifications – v1.0 – 28/04/2023 
 
 

 
11 

application known as the Pop-up VR Museum has been designed and is accessible to audiences via 
portable VR headsets. Its users can access, interact, and engage with Design Museum Helsinki’s 
collections. 
The experience of the Pop-up VR Museum is bound to be generative and dictated by a dynamic online 
repository of artefacts (3D models) and narratives (audio recordings and textual data) stored in the 
LDH. Mediators such as DMH staff, researchers, and members of affiliated institutions add artefact 
ontologies and narratives collected from end-user contributors to the LDH. 

 

• GAM Game 
The case study of the Gallery of Modern Art (GAM) in Turin, which addresses the inclusion of deaf 
people as target community, revolves around the notion of storytelling.  Through the web app, called 
GAM Game, users can create short stories by collecting and sequencing the artworks from the 
museum collection, and add a personal response to each of the artworks in the story. 
The LDH infrastructure is used to manage three main entities in the interaction with the client:  

o User id and data, which include the links to the stories created by the user;  
o Stories, each including its own properties (date, title, etc.) and the list of links to artworks by 

which it is composed, and the user responses (stored in textual form) associated to each 
artwork in the story; 

o Artefacts, each accompanied by its metadata, which include both the ones extracted from 
the collection catalogues and the ones added by the sensemaking components (associated 
emotions, values, themes, etc.) 

 

• Madrid - Treasure Hunt 
The case study of the Natural Museum of Natural Sciences of Madrid (MNCN) revolves around 
treasure hunts in the museum. A treasure hunt consists of a series of searches guided by clues 
describing the object in the collection to be found. Once the object is found, the game provides 
relevant information related to it and may pose related questions. 
 
The LDH infrastructure is used in this pilot to manage a series of entities in its interaction with the 
client, such as user information, treasure hunt definitions, persistent application state information, 
artefacts referenced in treasure hunts and user responses and interactions. 

 

 

2.3 Metadata  
id  LDH-API  

name  The Linked Data Hub API  

description  The data API underpinning the SPICE Linked Data Hub. Supports 
reading writing and querying of JSON documents and binary files and 
querying of RDF data representations in SPARQL. 

type  API  

release-date  27/03/2023  

release-number  v0.9.5 (main API) 

v0.1.6 (SPARQL addon) 

work-package  WP4, WP6  



 
 
SPICE GA 870811  D6.8 APIs Specifications – v1.0 – 28/04/2023 
 
 

 
12 

pilot  ALL  

keywords  JSON, RDF, SPARQL, REST  

licence  Apache Licence 2.0  

release-link  https://github.com/mkdf/api-factory/releases/tag/v0.9.5  
https://github.com/mkdf/api-factory-sparql/releases/tag/v0.1.6  

demo  https://api2.mksmart.org/ (access key required)  

links  https://github.com/mkdf/api-factory/  (main code repository) 

https://github.com/mkdf/api-factory-sparql (SPARQL addon) 

running-instance  http://spice.kmi.open.ac.uk   

credits  Jason Carvalho (jason.carvalho@open.ac.uk) 
Enrico Daga (enrico.daga@open.ac.uk)   

  

2.4 Guide for developers  
The following is an overview of API functions. Full details on specific parameter usage are available via the 
LDH-API’s live interface at https://api2.mksmart.org/. Full OpenAPI specification is also referenced in the 
OpenAPI specification section below. 

Access to and usage of the LDH-API is via API keys. API keys can be registered on the LDH web portal and 
assigned to specific datasets for either read, write or read/write access depending on the access control 
limitations set by the dataset owner.  All API calls must be authenticated, using HTTP Basic Authentication, 
using the API key as both the username and password.  

The API is made up of both user and management operations. Management operations are reserved for the 
creation and management of datasets, user keys and permissions. These management features are only 
available to API administrators and are also used as an interface to the API by the LDH web portal.  

 

2.4.1 User operations 
 

BROWSE 

A read-only API endpoint for retrieving data. The endpoint provides options for paging, sorting, 

filtering, field selection and complex database queries using MongoDB-style JSON queries. 

Usage:  

GET /browse/{dataset-uuid} 

Parameters: 

- query The filter query 
- sort Specify fields on which to sort the data. Sort fields should be specified as a comma separated 

list. Data will be sorted in ascending order. To specify a field to sort in descending order precede that 
field with a minus ('-') 

- fields Specify which fields to return. Fields should be specified as a comma separated list. Fields 
preceded with a minus ("-") will be excluded from the results. The "_id" field is always returned, 
unless explicitly excluded. 

- pagesize Specify page size (defaults to a page size of 100) 
- page Specify the page number of results to return (defaults to page 1) 

https://github.com/mkdf/api-factory/releases/tag/v0.9.5
https://github.com/mkdf/api-factory-sparql/releases/tag/v0.1.6
https://api2.mksmart.org/
https://github.com/mkdf/api-factory/
https://github.com/mkdf/api-factory-sparql
http://spice.kmi.open.ac.uk/
mailto:jason.carvalho@open.ac.uk
mailto:enrico.daga@open.ac.uk
https://api2.mksmart.org/


 
 
SPICE GA 870811  D6.8 APIs Specifications – v1.0 – 28/04/2023 
 
 

 
13 

Example request 

curl -X GET 

"https://api2.mksmart.org/browse/123456789?sort=id&fields=id,value&pagesize=5&pa

ge=1" -H "accept: */*" -H "Authorization: Basic dGVzdDp0ZXN0" 

 

OBJECT 

The object endpoint is used for standard CRUD-style database operations; reading, writing, updating 

and deleting. The HTTP method used (GET/POST/UPDATE/DELETE) defines which function is called. 

Usage: 

GET /object/{dataset-uuid} Retrieve documents from the dataset 

Parameters 

- query The filter query 
- limit Limit the number of documents retruend (defaults to 100) 

POST/object/{dataset-uuid} Create a new document in the dataset 

GET /object/{dataset-uuid}/{doc-id} Retrieve a single document from the dataset 

PUT /object/{dataset-uuid}/{doc-id} Update a document by ID 

DELETE /object/{dataset-uuid}/{doc-id} Delete a document by ID 

 

Example requests 

Retrieve the most recent 5 objects from dataset 123456789: 

curl -X GET "https://api2.mksmart.org/object/123456789?limit=5" -H "accept: */*" 

-H "Authorization: Basic dGVzdDp0ZXN0" 

 

Post a new object to dataset 123456789: 

curl -X POST "https://api2.mksmart.org/object/123456789" -H "accept: */*" -H 

"Authorization: Basic dGVzdDp0ZXN0" -H "Content-Type: application/json" -d 

"{\"_id\":\"1067\",\"attribute1\":\"42-a\",\"attribute2\":34.7}" 

 

Retrieve object 1001 from dataset 123456789: 

curl -X GET "https://api2.mksmart.org/object/123456789/1001" -H "accept: */*" -H 

"Authorization: Basic dGVzdDp0ZXN0" 

 

Update object 1001 in dataset 123456789: 

curl -X PUT "https://api2.mksmart.org/object/123456789/1001" -H "accept: */*" -H 

"Authorization: Basic dGVzdDp0ZXN0" -H "Content-Type: application/json" -d 

"{\"_id\":\"1067\",\"attribute1\":\"42-a\",\"attribute2\":34.7}" 

 

Delete object 1001 from dataset 123456789: 

curl -X DELETE "https://api2.mksmart.org/object/123456789/1001" -H "accept: */*" 

-H "Authorization: Basic dGVzdDp0ZXN0" 



 
 
SPICE GA 870811  D6.8 APIs Specifications – v1.0 – 28/04/2023 
 
 

 
14 

  

FILE 

This API endpoint is used to manage binary files within a dataset. 

Usage: 

GET /file/{dataset-uuid} Retrieve a list of files for a single dataset 

POST/file/{filename} Upload a new file 

Parameters (supplied as multipart/form-data) 

- title File title 
- description File description 
- file The binary file 

 

GET /file/{filename}/{doc-id} Retrieve a single file 

POST/file/{filename}/{doc-id} Update an existing file 

Parameters (supplied as multipart/form-data) 

- title File title 
- description File description 
- file The binary file 

 

DELETE /file/{filename}/{doc-id} Delete a file 

 

Example requests 

Retreive a list of files for dataset 123456789 

curl -X GET "https://api2.mksmart.org/file/123456789" -H "accept: */*" -H 

"Authorization: Basic dGVzdDp0ZXN0" 

 

Upload a new file to dataset 123456789 

curl -X POST "https://api2.mksmart.org/file/123456789" -H "accept: */*" -H 

"Authorization: Basic dGVzdDp0ZXN0" -H "Content-Type: multipart/form-data" -F 

"title=Image Title" -F "description=Image Description" -F 

"file=@myImage.jpg;type=image/jpeg" 

 

Retrieve myImage.jpg from dataset 123456789 

curl -X GET "https://api2.mksmart.org/file/123456789/myImage.jpg" -H "accept: 

*/*" -H "Authorization: Basic dGVzdDp0ZXN0" 

 

Update myImage.jpg in dataset 123456789 

curl -X POST "https://api2.mksmart.org/file/123456789/myImage.jpg" -H "accept: 

*/*" -H "Authorization: Basic dGVzdDp0ZXN0" -H "Content-Type: multipart/form-

data" -F "title=New Title" -F "description=New Description" -F 

"file=@myImage.jpg;type=image/jpeg" 

 



 
 
SPICE GA 870811  D6.8 APIs Specifications – v1.0 – 28/04/2023 
 
 

 
15 

Delete image myImage.jpg from dataset 123456789 

curl -X DELETE "https://api2.mksmart.org/file/123456789/myImage.jpg" -H "accept: 

*/*" -H "Authorization: Basic dGVzdDp0ZXN0"  

  

CHANGES 

The changes endpoint of the API can be used to query the Linked Data Hub’s activity log for updates to a 
single dataset. Create, update and delete operations are returned. By default, the newest items are returned 
first. 

Usage: 

GET /changes/{dataset-uuid} Retrieve a list of changes that have been made to a single dataset. 

Optional parameters (supplied as URL query parameters) 

- document-id Only return changes to a single document 
- timestamp Only return entries that have occurred since this timestamp 
- limit The maximum number of entries to return 
- sort Setting this parameter to ‘1’ reverses the sort order of results to return the oldest items first 

 

Example requests 

Retrieve a list of changes for dataset 1234567 

curl -X GET "https://api2.mksmart.org/changes/1234567" -H "accept: */*" -H 

"Authorization: Basic ZHNmc2RmOnNkZnNkZg==" 

 

Retrieve a list of changes for document ‘doc05678’, within dataset 1234567, since 01/01/2023 and ordered 
oldest to newest 

curl -X GET "https://api2.mksmart.org/changes/1234567?document-id=doc-

56789&timestamp=1672531200&sort=1" -H "accept: */*" -H "Authorization: Basic 

ZHNmc2RmOnNkZnNkZg==" 

 

SPARQL 

The SPICE Linked Data Hub API primarily operates with data in JSON format. However, all data that is pushed 
into the LDH is also replicated to RDF graphs so that it can be queried as linked data, using SPARQL. This API 
endpoint provides the facility to use read-only SPARQL queries against data stored within the LDH. 

Usage: 

/query/{dataset-uuid}/sparql 

Parameters 

- query The SPARQL query string (URL encoded) 

 

Example request 

This SPARQL query ... 

SELECT * WHERE { ?s ?p ?o } LIMIT 5 

... would be made on dataset 123456789 using the following HTTP request: 



 
 
SPICE GA 870811  D6.8 APIs Specifications – v1.0 – 28/04/2023 
 
 

 
16 

curl -X GET  

"https://api2.mksmart.org/query/123456789/sparql?query=SELECT%20%2A%20WHERE%20%7

B%20%3Fs%20%3Fp%20%3Fo%20%7D%20LIMIT%205" -H "accept: application/sparql-

results+json" -H "Authorization: Basic dGVzdDp0ZXN0" 

 

The results format can be chosen by passing an Accept header with the HTTP request. The following header 
values are supported: 

- application/sparql-results+json 
- application/sparql-results+xml 
- text/csv 
- text/tab-separated-values 

 

2.4.2 Management operations 
DATASETS 

Used for managing datasets within the API. 

Usage: 

GET /management/datasets Retrieve a list of all datasets 

POST /management/datasets Create a new dataset 
Parameters (supplied in the request body): 

- dataset-uuid The ID of the new dataset 
- key The initial key to assign for use with this dataset which will be given read/write access. The key 

will be created if it does not already exist.  

GET /management/datasets/{dataset-uuid} Retrieves a single dataset summary, including the 
number of documents in that dataset 
 

Example requests 

Retrieve a list of datasets 

curl -X GET "https://api2.mksmart.org/management/datasets" -H "accept: */*" -H 

"Authorization: Basic dGVzdDp0ZXN0" 

 

Create a dataset with id 123456789 using key key-001 

curl -X POST "https://api2.mksmart.org/management/datasets" -H "accept: */*" -H 

"Authorization: Basic dGVzdDp0ZXN0" -H "Content-Type: application/x-www-form-

urlencoded" -d "dataset-uuid=123456789&key=key-001" 

 

Retrieve details for dataset 123456789 

curl -X GET "https://api2.mksmart.org/management/datasets/123456789" -H "accept: 

*/*" -H "Authorization: Basic dGVzdDp0ZXN0" 

 

PERMISSIONS 

Used for creating, assigning and managing key permissions on datasets 

Usage: 



 
 
SPICE GA 870811  D6.8 APIs Specifications – v1.0 – 28/04/2023 
 
 

 
17 

GET /management/permissions Retrieve all permissions 

GET /management/permissions/{key} Retrieve all permissions for a single key 

POST /management/permissions/{key} Set/update permissions. If the key specified does not 
already exist, it will be created 

Parameters (supplied in the request body): 

- dataset-id The ID of the new dataset to set permissions on 
- read Whether this key should have read permission – set to 0 or 1 
- write Whether this key should have write permission – set to 0 or 1 

 

Example requests 

Assign key key-001 read and write permissions to dataset 123456789 

curl -X POST "https://api2.mksmart.org/management/permissions/key-001" -H 

"accept: */*" -H "Authorization: Basic dGVzdDp0ZXN0" -H "Content-Type: 

application/x-www-form-urlencoded" -d "dataset-id=123456789&read=1&write=1" 

 

Assign key key-001 read-only permission to dataset 123456789 

curl -X POST "https://api2.mksmart.org/management/permissions/key-001" -H 

"accept: */*" -H "Authorization: Basic dGVzdDp0ZXN0" -H "Content-Type: 

application/x-www-form-urlencoded" -d "dataset-id=123456789&read=1&write=0" 

 

Remove all permissions for key key-001 on dataset 123456789 

curl -X POST "https://api2.mksmart.org/management/permissions/key-001" -H 

"accept: */*" -H "Authorization: Basic dGVzdDp0ZXN0" -H "Content-Type: 

application/x-www-form-urlencoded" -d "dataset-id=123456789&read=0&write=0" 

 

2.5 OpenAPI Specification 
The LDH-API has been built with an OpenAPI specification. By doing so, a number of tools become available 
that can automatically interpret the specification and generate resources to speed up the use and adoption 
of the API by application developers. These resources include automatically generated web interfaces and 
automatically generated API clients in a number of programming languages. 

The LDH-API uses a dynamically generated OpenAPI specification that is dependent on any addon modules 
that are currently being used. In addition to the core API software, the SPICE LDH-API also makes use of the 
optional SPARQL addon, as detailed in the API metadata table above. 

A static version of the full OpenAPI 3.0.1 specifications in JSON format has been materialised for the purposes 
of this report, based on v0.9.5 of the main API software and version v0.1.6 of the SPARQL addon. These are 
available within the main API repository for the user operations and management operations in the following 
file locations:  

/module/apif-core/view/apif/core/index/swagger-config-main.json 

/module/apif-core/view/apif/core/index/swagger-config-management.json 

The permanent link for the repository as of the release of this report is available here: 

https://doi.org/10.5281/zenodo.7858954  

 

https://doi.org/10.5281/zenodo.7858954


 
 
SPICE GA 870811  D6.8 APIs Specifications – v1.0 – 28/04/2023 
 
 

 
18 

  



 
 
SPICE GA 870811  D6.8 APIs Specifications – v1.0 – 28/04/2023 
 
 

 
19 

3 User Model API  
3.1 Description of the system 
The purpose of the User Model (UM) is to store information about the user so that it can be reasoned about 
in a uniform way, for use in the community model and the case study application. It can also be used to guide 
scripts and post-analysis. 

The developer is exposed to a number of data objects (Users, User Properties, User Generated Content, User 
History) which can be accessed by basic CRUD (Create, Read, Update, Delete) functionality. The API provides 
examples of how to derive User Model properties from user interactions and user-generated content. 

For information about design principles see D3.1 and D3.3 documents. 

A typical scenario could be the following: content is shown to the user, s/he then writes something, this is 
analysed by the Semantic Analyzer (cf. D3.2), the values derived are stored in the User Model for further use 
by the Community Model. To show the next bit of content the Social Recommender is used, (whose actions 
are based on the Community & User Models) 

Within the Hecht Case Study, the User Model is used for two applications: 1) A student application which 
guides them through activities prior to the visit, during the Museum visit and after the museum visit. 2) A 
teacher/researcher application that allows the teacher/researcher to examine the results and perform some 
basic analysis. The User Model is also currently used across a number of other case studies, including the 
work with DMH. 

For more details see deliverable D3.3. 

 

3.2 Metadata 
Id UM-API 

Name User Model API 

Type API 

release-date 01/05/22 

release-number 2.0 

work-package WP3 

keywords User Model, User Profile, REST 

Licence Apache Licence 2.0 

demo User Model Demo, Hecht Use Case 

running-instance  

credits Alan J. Wecker (ajwecker@gmail.com) Tsvika Kuflik 
(tsvikak@is.haifa.ac.il)  

 

3.3 Guide for developers 
In general, the flow is that the user interface (UI) stores a number of User History (UH) items, these can be 
used to create User Generated Content (UGC). These are analyzed by the Semantic Analyzer (SA) to create 
User Model Properties (UM).  Alternatively, UM properties can be created directly from UH items. 

See D3.3 for further detailed information. 

mailto:ajwecker@gmail.com
mailto:tsvikak@is.haifa.ac.il


 
 
SPICE GA 870811  D6.8 APIs Specifications – v1.0 – 28/04/2023 
 
 

 
20 

 
user-controller 

Usage: 

POST /api/v2/users2Create - Create a new user. Note: ID should be anonymized 

Parameters: 

- No parameters 

Request body: 
- User – see Schema (note: propertiesCount, ugcCount, userHistoryCount are not needed as 

they are derived values) 

Returns: 
- 200 – OK 

 

GET/api/v2/users2 - Get all users, sorted by name 

Parameters: 
- No parameters 

Request Body: 
- None 

Returns: 
- 200 – OK. Returns an array of Users 

 

DELETE/api/v2/users2Delete/{userid} - Remove a user by userid 

Parameters: 
- Userid 

 

u-history-controller 

Usage: 

PUT /api/v2/uhistoryUpdate/{userid} - Update a specific uhistory for a specific user 

Parameters: 
- Userid 

Request Body: 
- UHistory 

 

POST /api/v2/uhistoryCreate/{userid} - Add a new uhistory for a user 
Parameters: 

- Userid 

Request Body: 

- UHistory 

Returns: 

- None 

http://localhost:8080/swagger-ui/index.html#/user-controller/getAllUsers
http://localhost:8080/swagger-ui/index.html#/user-controller/deleteUser


 
 
SPICE GA 870811  D6.8 APIs Specifications – v1.0 – 28/04/2023 
 
 

 
21 

 

GET /api/v2/uhistoryGetAllByUserid/{userid} - Get all properties for a specific user 
Parameters: 

- Userid 

Returns: 

- UHistory 

 

GET /api/v2/uhistoryGetAllByPname/{pname} - Get all properties with a certain uhistory name 
Parameters: 

- Pname - Property name 

Request Body: 

- None 

Returns: 

- UHistory 

 

GET /api/v2/uhistoryGet/{userid}/{pname} - Get a uhistory for a user with a specific name 
Parameters: 

- Userid 
- Pname 

Request Body: 

- None 

Returns: 

- Array of UHistory 

 

DELETE /api/v2/uhistoryDelete/{userid}/{pname} - Delete a specific uhistory for a specific user 
Parameters: 

- Userid 
- Pname – property name 

Request Body: 

- None 

Returns: 

- Array of UHistory 

 

property-controller 

Usage: 

POST /api/v2/propertyCreate/{userid} - Add a new property for a user 

Parameters: 

- Userid: string 



 
 
SPICE GA 870811  D6.8 APIs Specifications – v1.0 – 28/04/2023 
 
 

 
22 

- Pname: string – property name 

Request Body: 

- Schema of Property 

Returns: 

- None 

 

GET /api/v2/propertyModel/{userid} - Model properties for a specific user 

Parameters: 

- Userid: string 

Request Body: 

- None 

Returns: 

- None 

 

GET /api/v2/propertyGetAllByUserid/{userid} - Get all properties for a specific user 

Parameters: 

- Userid 

Request Body: 

- None 

Returns: 

- Array of Property 

 

GET /api/v2/propertyGetAllByPname/{pname} - Get all properties with a certain property name 

Parameters: 

- Pname – property name 

Request Body: 

- None 

Returns: 

- Array of Property 

 
GET /api/v2/propertyGet/{userid}/{pname} - Get a specific property for a specific user 

Parameters: 

- Userid  
- Pname – property name 

Request Body: 

- None 



 
 
SPICE GA 870811  D6.8 APIs Specifications – v1.0 – 28/04/2023 
 
 

 
23 

Returns: 

- Property 

 

DELETE /api/v2/propertyDelete/{userid}/{pname} - Delete a property for a specific user 

Parameters: 

- Userid 
- Pname – property name 

Request Body: 

- None 

Returns: 

- None 

 

user-generated-content-controller 

Usage: 

POST /api/v2/ugcCreate/{userid} - Add a new User Generated Content for a user 

Parameters: 

- Userid 

Request Body: 

- UGC 

Returns: 

- None 

 

GET /api/v2/ugcAnalyzeAllByUser/{userid} - Analyse all UGCs for a specific user 

Parameters: 

- Userid: string 

Request Body: 

- None 

Returns: 

- None 

 

GET /api/v2/ugcGetByUseridAndName/{userid}/{ugcname} - Get UGC for a specific user 
Parameters: 

- Userid 
- Ugcname – ugc type name 

Request Body: 

- None 

Returns: 



 
 
SPICE GA 870811  D6.8 APIs Specifications – v1.0 – 28/04/2023 
 
 

 
24 

- UGC 

 

GET /api/v2/ugcGetAllByUserid/{userid} - Get all UGC for a specific user 

Parameters: 

- Userid 

Request Body: 

- None 

Returns: 

- Array of UGC 

 

3.4 Schemas 
The following schema definitions describe the properties names and types for each of the data structures 
used within the User Model API. 

 

User 

source String – Where was this info taken 

context String – Under what circumstances 

id integer($int64) 

userid string 

password string 

ptype String – participation type 

role String - (e.g. visitor, curator) 

propertiesCount integer($int64) - Derived number of user model properties 

ugcCount integer($int64) - Derived number of user generated content 

getuHistoryCount integer($int64) - Derived number of user history items 

 

UHistory 

source string 

context string 

id integer($int64) 

userid string 

pname String- Property name 

pvalue String – Property Value 

 

Property 



 
 
SPICE GA 870811  D6.8 APIs Specifications – v1.0 – 28/04/2023 
 
 

 
25 

source String: From which ugc derived 

context application 

id integer($int64) 

userid String: from user db 

category String: part of property name (generic) 

pname String:  property name from ontology 

pvalue String: property value from ontology 

datapoints integer($int32) 

origin String: what artefact is this talking about 

 

UserGeneratedContent 

source string 

context string 

id integer($int64) 

userid string 

parentname String- name of parent ugc if this is a comment to comment 

parenttype String – what type of media was parent 

contentType String – what is media type of this entry 

ugcname String – Generic Name of entry 

ugcimage String – If UGC contains image hled here 

ugctags String – User provided tags concerning ugc 

ugcdesc String – Written description of UGC passed to SA 

ugcmeta String – Explicit structured info by user about ugc 

emotions Array of name-value pairs 

sentiments Array of name-value pairs 

 

 

  



 
 
SPICE GA 870811  D6.8 APIs Specifications – v1.0 – 28/04/2023 
 
 

 
26 

4 Community Model API 
4.1 Description of the system 
The Community Model API (CM-API) is the access point to the Community Model (CM), which supports the 
social cohesion across groups, by the understanding of their differences and recognizing what they have in 
common. The community model is responsible for storing information about explicit communities that users 
belong to. Additionally, it creates the implicit communities inferred from user interactions and it computes 
the metrics needed to define the similarity (and dissimilarity) among group of users. The Community Model 
will support the recommender system in the variety and serendipity to the recommendation results, that will 
not be oriented to the typically popular contents or based on providing “more of the same” similar contents 
to the users (the so called, filter bubble) but to the inter-group similarities and the intra-group differences. 

The CM-API exposes a set of REST-based operations for accessing information about implicit and explicit 
communities, for creating and accessing perspectives and endpoints for operations related to similar and 
dissimilar communities. CM-API is also employed by the User Model to notify changes in user attributes and 
the creation of new user generated content. This new version also includes new endpoints for VISIR (a 
visualization tool for supporting the Interaction-Reflection Loop and the creation of perspectives for the 
Community Model), as long as some endpoints for development purposes. The CM-API acts as a façade that 
hides the modules that appear in Figure 4.1.1  

The CM-API primarily works using the community data stored in a Document Database implemented using 
MongoDB1. The access to this database is implemented using a Data Access Object (DAO) pattern2, so it 
isolates the details for accessing the database. The information stored in the database is generated by the 
Community Model, described in Deliverables D3.3 and D3.5. 

The CM-API is also responsible for supplying the Community Model with all the data about the users within 
the system. When a new user arrives at the SPICE infrastructure, the User Model notifies and provides the 
CM-API with the data provided by the user. Additionally, when a user contributes with interactions that are 
interesting according to the design of the SPICE case studies (interactions with museum items and concepts), 
the User Model will send these interactions to the Community Model using the CM-API. The Community 
Model is responsible for managing this new user data, updating the communities for the case study and store 
them in the database. This way, updated information about the communities will be accessible through the 
CM-API.  

The CM-API will support the recommender system for accessing similarities and differences both within 
single groups and between different groups. CM-API will not be only used to know which communities a user 
belongs to, but also to retrieve de most similar o dissimilar communities to a given one. This information is 
not computed by the CM-API but created and stored by the community model and retrieved from the 
database. 

 

1 https://www.mongodb.com/ 
2 https://www.oracle.com/java/technologies/dataaccessobject.html 



 
 
SPICE GA 870811  D6.8 APIs Specifications – v1.0 – 28/04/2023 
 
 

 
27 

 

Figure 4.1.1. Overview of the CM-API infrastructure. 

4.2 Metadata 
id CM-API 

name Community Model API 

description API for accessing data generated by the Community Model and for 
updating user data used by the Community Model for finding 
communities 

type API 

release-date 01/03/2022 

release-number v.2.0 

work-package WP3 

keywords Community detection, clustering, REST. 

licence Apache Licence 2.0 

links https://spice.fdi.ucm.es/hecht/ (Documentation) 

https://spice.fdi.ucm.es/hecht/v2.0/ (API) 

https://spice.fdi.ucm.es/hecht/api-docs/ (interactive documentation) 

running-instance https://spice.fdi.ucm.es/hecht/ 

https://spice.fdi.ucm.es/gam/ 

https://spice.fdi.ucm.es/dmh/ 

https://spice.fdi.ucm.es/mncn/   

credits Guillermo Jiménez Díaz (gjimenez@ucm.es), Belén Díaz Agudo 
(belend@ucm.es) José Ángel Sánchez Martín (josanc16@ucm.es), Ilya 
Lapshin (ilapshin@ucm.es) 

related-components UM-API 

 

  

https://spice.fdi.ucm.es/hecht/
https://spice.fdi.ucm.es/hecht/v2.0/
https://spice.fdi.ucm.es/hecht/api-docs/
https://spice.fdi.ucm.es/hecht/
https://spice.fdi.ucm.es/gam/
https://spice.fdi.ucm.es/dmh/
https://spice.fdi.ucm.es/mncn/
mailto:gjimenez@ucm.es
mailto:belend@ucm.es
mailto:josanc16@ucm.es
mailto:ilapshin@ucm.es


 
 
SPICE GA 870811  D6.8 APIs Specifications – v1.0 – 28/04/2023 
 
 

 
28 

4.3 Guide for developers 
The following is an overview of API functions. Full OpenAPI specification is also referenced in the OpenAPI 
specification section below.  

The source code repository contains a suite of integration tests that verifies that all the API functions are 
working correctly according to its OpenAPI specification. 

The API provides several entry points with their corresponding operations. Some API requests take some 
time because the community model needs to update the data and models for providing a response. In this 
case, the API will return a 202-response code with a job id. With this job ID, the user can periodically monitor 
the status of the job (using the GET /jobs-manager/jobs/{id} endpoint) and retrieve the requested 
data when the community model finishes the computation process. 

All API calls must be authenticated, using HTTP Basic Authentication, using username and password. 
Authentication credentials are created specifically for each case study and, hence, community model server. 

4.3.1 Community operations 
A read-only API endpoint for retrieving data about the communities.  

Usage: 

GET /communities 

Access to a list of all the communities in the community model 

Parameters 

 None 

Responses 

A list of the communities contained in the community model. Every community is represented in an object 
with the following attributes: 

• id: Unique id for the community in the community model 

• name: Community name (for explicit communities) 

• explanation: Community description (maybe empty). It can be computed by the explanation 
module from the Community Model or it can be provided by curators when defining explicit 
communities. 

• community-type: Type of community (implicit or explicit). Implicit communities are computed by 
the community model. Explicit communities are provided by the user model. 

• users: A list with the user ids who belong to the community. 

Example request  

curl -X GET "https://spice.fdi.ucm.es/hecht/v2.0/communities" 

 

GET /communities/{community-id} 

Returns information about a community 

Parameters 

 None 

Responses 

An object with information about the requested community.  

A response with status 400 is generated if the community model does not store any community with this 
community id. 



 
 
SPICE GA 870811  D6.8 APIs Specifications – v1.0 – 28/04/2023 
 
 

 
29 

Example request  

curl -X GET 

"https://spice.fdi.ucm.es/hecht/v2.0/communities/621e53cf0aa6aa7517c2afdd" 

 

GET /communities/{community-id}/users 

Returns a list with the ids of the users who belong to a community. 

Parameters 

 None 

Responses 

A list of user ids (cannot be empty).  

A response with status 400 is generated if the community model does not contain any community with this 
community id. 

Example request  

curl -X GET 

https://spice.fdi.ucm.es/hecht/v2.0/communities/621e53cf0aa6aa7517c2afdd/users 

 

4.3.2 User operations 
This endpoint provides GET/POST operations for requesting the communities that a user belongs to and 
updating data about user attributes and user generated content.  

GET /users/{user-id}/communities 

Returns a list with the communities that the user belongs to.  

Parameters 

 None 

Responses 

A list of objects with information about the communities that the user belongs to (cannot be empty).  

A response with status 400 is generated for invalid user ids. 

Example request  

curl -X GET "https://spice.fdi.ucm.es/hecht/v2.0/users/23/communities" 

 

POST /users/{user-id}/update-generated-content 

This service is employed to inform the Community Model about the User Generated Content (UGC) updated 
in the User Model. 

Request Body 

A list of UGC objects that represent the information about the user that will be added to the community 
model. Every UGC follows the schema provided by the User Model (User Generated Content Schema in 
section Error! Reference source not found.) is represented in an object with the following attributes: 

• id: Unique id for the UGC in the user model 

• userid: Unique user id 

• origin: Unique id for the item or concept in the museum that this user generated content refers 
to. 



 
 
SPICE GA 870811  D6.8 APIs Specifications – v1.0 – 28/04/2023 
 
 

 
30 

• source_id: Unique id for the UGC that this content is derived from. 

• source: Description about the UGC that this content is derived from. 

• pname: Name of the property included in this UGC. 

• pvalue: Value of the property included in this UGC. 

• context: Context of the property included in this UGC. 

• datapoints: Number of datapoint used to generate this UGC 

Only (id, userid, origin, source_id, pname, pvalue) are mandatory required. 

Responses 

A response with status 400 is generated if the user-id in the url differs from any userid in the objects 
contained in the list in the body request.  

If correct, an empty response with status 204 is generated. 

Example request  

curl -d 

'[{"id":"12345","userid":"23","origin":"14294","source_id":"1893","source":"cont

ent desc","pname":"DemographicGender","pvalue":"F","context":"application 

P:DemographicsPrep","datapoints":0}]' -H "Content-Type: application/json" -X 

POST "https://spice.fdi.ucm.es/hecht/v2.0/users/23/update-generated-content" 

 

4.3.3 Similarity operations 
A read-only API endpoint for retrieving information about similarities and dissimilarities between 
communities.  

Usage: 

GET /communities/{community-id}/similarity 

Returns a list with the k most similar communities to the chosen one in the community model. 

Parameters 

 k: Size of the result (k most similar communities). 

Responses 

A list of the similarity scores between the parameter community and the k-most similar communities, in 
descending order. Every similarity score is represented in an object with the following attributes: 

• target-community-id: Unique id for the community parameter in the community model 

• other-community-id: Unique id for another community in the community model 

• value: Similarity value between the specified communities. 

• similarity-function: similarity function employed to compute this similarity score. 

A response with status 400 is generated if the community model does not contain any community with this 
community id. 

Example request  

curl -X GET 

"https://spice.fdi.ucm.es/hecht/v2.0/communities/621e53cf0aa6aa7517c2afdd/simila

rity?k=5" 

 

GET /communities/{community-id}/similarity/{other-community-id} 

Returns the similarity score between two communities.  



 
 
SPICE GA 870811  D6.8 APIs Specifications – v1.0 – 28/04/2023 
 
 

 
31 

Parameters 

 None 

Responses 

A similarity score object. The similarity score is always 1.0 if both communities are the same. 

A response with status 400 is generated if the community model does not contain any community with any 
of the community ids contained in the URL. 

Example request  

curl -X GET 

"https://spice.fdi.ucm.es/hecht/v2.0/communities/621e53cf0aa6aa7517c2afdd/simila

rity/721e53cf0aa6aa7517c2afdd" 

 

GET /communities/{community-id}/dissimilarity 

Returns a list with the k most dissimilar communities to the chosen one in the community model. 

Parameters 

 k: Size of the result (k most similar communities). 

Responses 

A list of the dissimilarity scores between the parameter community and the k-most dissimilar communities, 
in descending order. Every dissimilarity score is represented in an object with the following attributes: 

• target-community-id: Unique id for the community parameter in the community model 

• other-community-id: Unique id for another community in the community model 

• value: Dissimilarity value between the specified communities. 

• similarity-function: dissimilarity function employed to compute this dissimilarity score. 

A response with status 400 is generated if the community model does not contain any community with this 
community id. 

Example request  

curl -X GET 

"https://spice.fdi.ucm.es/hecht/v2.0/communities/621e53cf0aa6aa7517c2afdd/dissim

ilarity?k=5" 

 

GET /communities/{community-id}/dissimilarity/{other-community-id} 

Returns the dissimilarity score between two communities.  

Parameters 

 None 

Responses 

A dissimilarity score object. The dissimilarity score is always 0.0 if both communities are the same. 

A response with status 400 is generated if the community model does not contain any community with any 
of the community ids contained in the url. 

Example request  

curl -X GET 

"https://spice.fdi.ucm.es/hecht/v2.0/communities/621e53cf0aa6aa7517c2afdd/dissim

ilarity/721e53cf0aa6aa7517c2afdd" 



 
 
SPICE GA 870811  D6.8 APIs Specifications – v1.0 – 28/04/2023 
 
 

 
32 

4.3.4 Perspective operations 
The perspectives define different ways to infer the implicit communities in terms of the citizen contributions 
and how similar the artworks that citizens interact with are. They are the key concept to configure the 
community model (see Deliverable 3.7 for more information about perspectives and community model). The 
Community Model API provides access to configure and retrieve the perspectives. 

Usage: 

GET /perspectives 

Returns a list of the perspectives in the community model. If the CM update is necessary returns a job. 

Parameters 

None 

Reponses: 

A list of all perspectives in the community model (see next operation) 

A response with status 202 returns a job that must be checked until the Community model update finishes. 

Example request: 

curl -X GET "https://spice.fdi.ucm.es/hecht/v2.0/perspectives" 

 

GET /perspectives/{perspectiveId} 

Returns information about a perspective. If the CM update is necessary returns a job. 

Parameters 

None 

Reponses: 

An object that describes the perspective configuration in the community model. It contains the following 
attributes: 

• Id: Unique id 

• Name: Perspective name 

• algorithm: an object with the algorithm configuration used for creating the communities using this 
perspective. 

• similarity_function: a list with the similarity functions employed by the community model. 

•  user_attributes: a list with the user attributes employed for defining the explicit communities. 

Example request: 

curl -X GET 

"https://spice.fdi.ucm.es/hecht/v2.0/perspectives/641987b1a1605e13287486a7" 

 

POST /perspectives/ 

Adds a new perspective to the community model and updates it, running the clustering algorithm. 

Request Body: 

An object that describes the perspective configuration in the community model. It contains the following 
attributes: 

• Id: Unique id 

• Name: Perspective name 



 
 
SPICE GA 870811  D6.8 APIs Specifications – v1.0 – 28/04/2023 
 
 

 
33 

• algorithm: an object with the algorithm configuration used for creating the communities using this 
perspective. 

• similarity_function: a list with the similarity functions employed by the community model. 

•  user_attributes: a list with the user attributes employed for defining the explicit communities. 

Parameters 

None  

Reponses: 

A response with status 204 with a job id represents that the perspective was added and the clustering 
algorithm is running. 

A response with status 400 indicates that the perspective configuration object is not correct. 

Example request: 

curl -d ' 

{"algorithm":{"name":"agglomerative","params":[],"weight":"0.5","weightArtworks"

:"0.5"},"id":"641987b1a1605e13287486a7","name":"SimEmotionsSimilarArworkbyIconCl

ass","similarity_functions":[{"sim_function":{"on_attribute":{"att_name":"iconcl

assArrayIDs","att_type":"List"},"name":"IconClassSimilarityDAO","params":[],"dis

similar":false}}],"user_attributes":[{"att_name":"demographics.RelationshipWithA

rt","att_type":"String"},{"att_name":"demographics.ContentInLIS","att_type":"Str

ing"}],"interaction_similarity_functions":[{"sim_function":{"on_attribute":{"att

_name":"interest.itMakesMeThinkAbout.emotions","att_type":"dict"},"interaction_o

bject":{"att_name":"id","att_type":"String"},"name":"ExtendedPlutchikEmotionSimi

larity","params":[]}}]} ' -H "Content-Type: application/json" -X POST 

"http://spice.fdi.ucm.es/hecht/v2.0/perspectives/" 

 

DELETE /perspectives/{perspectiveId}  

Adds a new perspective to the community model and updates it, running the clustering algorithm. 

Deletes an existing perspective, referenced by ID. 

Parameters: 

None. 

Responses: 

A response with status 200 if the deletion request is performed successfully. 

A response with status 400 indicates that there is not a perspective with the provided ID. 

A response with status 401 indicates that the user is not authorized to perform that request. 

Example request: 

curl -X DELETE "https://spice.fdi.ucm.es/hecht/v2.0/perspectives/641987b" 

 

4.3.5 VISIR operations 
VISIR is a visualization tool that helps curators in the interpretation reflection loop process and is employed 
to configure the perspectives in the community model. See Deliverable D.X.X for more information about 
VISIR. Community model generates visualization files for the tool and provides specific operations for VISIR: 

Usage: 

GET /seed 



 
 
SPICE GA 870811  D6.8 APIs Specifications – v1.0 – 28/04/2023 
 
 

 
34 

Returns a seed file, a file with metainformation about the data that will be used by the community model. 
This seed file will be employed by the perspective configuration tool for building new perspectives and add 
them to the community model. 

Parameters 

None  

Reponses: 

A seed file, a file with metainformation about the data in the community model. 

Example request: 

curl -X GET "http://spice.fdi.ucm.es/hecht/v2.0/seed" 

 

GET /files 

Returns a list of the visualization files generated in the community model. If the CM update is necessary 
returns a job. 

Parameters 

None  

Reponses: 

A list of all visualisation file ids in the community model  

A response with status 202 returns a job that must be checked until the Community model update finishes. 

Example request: 

curl -X GET "http://spice.fdi.ucm.es/hecht/v2.0/files" 

 

GET /files/{fileId} 

Returns a visualisation file. If the CM update is necessary returns a job. 

Parameters 

None  

Reponses: 

A visualisation file with information about the communities in a perspective, their user, and the list of 
interactions needed by VISIR 

Example request: 

curl -X GET "http://spice.fdi.ucm.es/hecht/v2.0/files/641987b1a1605e13287486a7" 

 

4.3.6 Development operations 
Community model provides some entry points for operations related to the development process and the 
deployment of community model servers. 

 

Usage: 

GET /logs 

Returns last N log messages from the community model. 



 
 
SPICE GA 870811  D6.8 APIs Specifications – v1.0 – 28/04/2023 
 
 

 
35 

Parameters 

• NLogs (required): the number of last retrieved log files 

• logsType (optional): Type of logs ("ALL" "DEBUG" "INFO" "WARNING" "ERROR" "CRITICAL") 

Reponses: 

A list of N log objects. 

A response with status 400 indicates that nLogs is missing or the log type is not correct. 

Example request: 

curl -X GET "http://spice.fdi.ucm.es/hecht/v2.0/logs?nLogs=2" 

 

GET /logs/dateRange 

Returns log messages between two dates. 

Parameters 

• startDate (required). Starting date in ISO 8601 format: YYYY-MM-DD or YYYY-MM-DDTHH:MM:SS 

• endDate (required). End date in ISO 8601 format: YYYY-MM-DD or YYYY-MM-DDTHH:MM:SS 

• LogsType: Type of logs ("ALL" "DEBUG" "INFO" "WARNING" "ERROR" "CRITICAL") 

Reponses: 

A list of all the log objects generated in the date range. 

A response with status 400 indicates that the date is not in correct format or startDate is later than endDate. 

Example request: 

curl -X GET "http://spice.fdi.ucm.es/hecht/v2.0/logs/dateRange?startDate=2023-

03-21T00:00:00Z&endDate=2023-03-22T00:00:00Z 

 

GET /database-controller/dump 

Returns a dump file in JSON format from the MongoDB database used by the community model. 

Parameters 

None 

Reponses: 

A dump of the database 

Example request: 

curl -X GET "http://spice.fdi.ucm.es/hecht/v2.0/database-controller/dump" 

 

 

GET /database-controller/dump 

Overwrites the MongoDB database used by the community model with a dump file. 

Request body 

A dump file of the community model database 

Reponses: 



 
 
SPICE GA 870811  D6.8 APIs Specifications – v1.0 – 28/04/2023 
 
 

 
36 

The uploaded file if the database was correctly overwritten. 

Example request: 

curl –d @dump.json -X POST "http://spice.fdi.ucm.es/hecht/v2.0/database-

controller/dump" 

 

4.4  OpenAPI Specification 
CM-API uses a dynamically generated OpenAPI specification. A static version of the full OpenAPI 3.0.1 
specifications in YAML format has been materialised for the purposes of this report, based on v1.1 of the CM-
API. It is available within the CM-API repository in the following file location: 

http://spice.fdi.ucm.es/openapi.yaml 

  

http://spice.fdi.ucm.es/openapi.yaml


 
 
SPICE GA 870811  D6.8 APIs Specifications – v1.0 – 28/04/2023 
 
 

 
37 

5 SPICE Semantic Annotator API  
 

5.1 Description of the system 
Spice Semantic Annotator (SSA) is an annotation service for the semantic enrichment of textual contents, 
targeting user generated contents as well as descriptions of museum artefacts. The service is multilingual 
and supports English, Finnish, Hebrew, Italian and Spanish. It consists of a natural language processing 
pipeline that performs: 

• Sentiment Analysis,  

• Emotion Detection  

• Entity Linking 

• Hate Speech Detection 

The process of semantic annotation is realized by a Natural Language Processing Pipeline that includes 
different analysis modules, each one responsible for annotating the document with respect to a specific 
aspect: sentiment analysis, emotion detection, entity linking. The overall process is exposed by means of 
standard RESTful1 APIs and produces a JSON-LD2 document as output. JSON-LD is a JSON-based serialization 
for Linked Data that can be seamlessly stored in the Linked Data hub of WP4. 

SSA analyses textual contents collected from museum visitors interacting with the activities scripted in the 
interfaces (WP5) and realized for the different use cases (WP7). The service annotates contents with respect 
to the ontological models developed in WP6 and generates as output an RDF graph to be stored in the linked 
data hub developed by WP4. Such analysis puts the visitor at the centre by interpreting and then enhancing 
his point of view and contributes to: 

• the process of defining profiles of each visitor in order to build Community Models (the profiles and 
models are generated by task 3.1).  

• the design of an advanced recommendation engine (task 3.3) 

• The pipeline is designed following a Microservice Architecture3 approach, exploiting a wide variety 
of models and solutions available on the open source.  

o It is deployed as a Microservice Architecture on a Kubernetes4 cluster. Kubernetes is an 
open-source system for automating deployment, scaling, and management of containerized 
components (e.g., Docker6 images).  

The whole system is deployed to AWS7 cloud resources, on servers located in the European region. The 
architecture and layout of the service is provided below in Figure 5.1.1. 

 



 
 
SPICE GA 870811  D6.8 APIs Specifications – v1.0 – 28/04/2023 
 
 

 
38 

 
Figure 5.1.1. SPICE Semantic Annotator Architecture 

 

This section describes SSA API detailing about its input, output and usage. The service is exposed through 
standard REST API behind a Basic Authentication18 scheme. The service can be accessed at the URL: 

 

• https://analytics-demo.aws.celi.it/<LANGCODE>/spice/analysis 

 

<LANGCODE> is a path parameter and it is used to specify the language content, the supported values are: 

• en,es,fi,he,it 

 

The service can be activated on request (by contacting sophiaanalytics.support@h-farm.com for the 
activation and the authentication details) and can be accessed through POST requests, accepting a json 
document as input, with the following properties: 

 content: mandatory - the textual contents to be analyzed 

 ns_prefix: optional - the prefix used for representing the textual content in the JSON-LD response 
document, default value is "spice" 

 ns_uri: optional - the URI of the ontology used for representing the textual contents in the JSON-
LD document, default value is "https://w3id.org/spice/resource/" 

 collection: optional - a textual label representing the collection/museum/use case, default value 
is "spice" 

An example of input is: 

• {"content": "I love this painting!", "collection": "test"} 

mailto:sophiaanalytics.support@h-farm.com
https://w3id.org/spice/resource/


 
 
SPICE GA 870811  D6.8 APIs Specifications – v1.0 – 28/04/2023 
 
 

 
39 

 

5.2 Metadata 
id SSA 

name SPICE Semantic Annotator API 

description Final Version of SSA 

type Rest API 

release-date 14/01/2023 

release-number 1.2 

work-package WP3 

keywords Semantic annotation of User Generated Contents 

credits Alessio Bosca (alessio.bosca@h-farm.com) 

 

5.3 Guide for developers 
An example API request to SSA service API, using python with the well known requests21 lib: 

 

import requests 
 
def testService(text: str, lang: str) -> object: 
    r = requests.post(' https://analytics-demo.aws.celi.it/'+lang+'/spice/analysis', 
                      json={"content":text, "collection":"test"}, 
                      auth=('USR', 'PWD')) 
    print(r.json()) 
 
if __name__ == "__main__": 
    testService("I love Picasso's Guernica, but I am absolutely terrified by the screaming horse!", 'en') 

SSA API request example via Python 

 

Please notice that USR and PWD MUST be substituted with a real authentication in order to access the API. 

The Semantic Annotator exposes the NLP pipeline analysis results as a JSON-LD22 document. JSON-LD is a 
method of encoding linked data using JSON.  Linked Data is structured data which is interlinked with other 
data so it becomes more useful through semantic queries. It builds upon standard Web technologies such as 
HTTP, RDF and URIs. More details on the Linked Data Hub designed and deployed by WP4 can be found in 
D4.1 Linked Data server technology:  requirements and initial prototype. 

 

The JSON-LD document contains two main sections: 

 Context: detailing the ontologies used to describe data along with their prefix (used for compact 
notations in the graph section) 

 Graph: containing a set of RDF triples represented as JSON objects; in our case the textual contents 
along with some metadata, followed by a set of annotations referencing the textual spans that can 
be linked to an emotion, a sentiment value or an entity (within DBPedia knowledge graph) 

 

mailto:alessio.bosca@h-farm.com


 
 
SPICE GA 870811  D6.8 APIs Specifications – v1.0 – 28/04/2023 
 
 

 
40 

The following image represents the service output for the input: “I love Picasso's Guernica, but I am 
absolutely terrified by the screaming horse!” 

 

 

 Figure 6.3.1. SSA JSON-LD output - @context section  

 



 
 
SPICE GA 870811  D6.8 APIs Specifications – v1.0 – 28/04/2023 
 
 

 
41 

 

Figure 6.3.2. JSON-LD output - @graph Section 

 



 
 
SPICE GA 870811  D6.8 APIs Specifications – v1.0 – 28/04/2023 
 
 

 
42 

In the LDH, a specific dataset for each museum is used to collect all users’ generated content related to a 
specific use case. One of the parameters of SSA API consists of a label for the collection of the contents to be 
analysed. If the value of the collection parameter refers to one of the museum use cases, then the JSON-LD 
document is saved in a use case specific dataset, otherwise a fallback test dataset is used. 

The following table details the museum specific collections along with the relative dataset UUID; the fallback 
test dataset details are also reported at the end of the table. 

 

Collection - Museum Use Case Dataset UUID in LDH 

IMMA b3631f48-2657-4cd3-96fa-4887c6e0c63a 

GAM 810d60a6-c7be-4299-be2e-c86d988f58ad 

HECHT 4125ba0c-adbe-4b0b-a2ff-3a5dde29d088 

MNCN 2ae73c0c-84ad-416c-b17b-23032a75f0ef 

DMH 514c5676-2560-47a9-bab4-76ff42eb0b83 

test 85c109bb-6090-4110-9422-79303183fae5 

 

  



 
 
SPICE GA 870811  D6.8 APIs Specifications – v1.0 – 28/04/2023 
 
 

 
43 

6 Social Recommender API  
6.1 Description of the system 
The purpose of this component is to provide social recommendations based on user generated content to 
aid in the implementation of the interpretation-reflection loop of WP2; primarily reflection. You can choose 
similar viewpoints by different communities to engender inclusion and use different viewpoints by similar 
communities to try and engender cohesion. The recommendations are based on similar and dissimilar views 
of topics and subjects and material from both similar and dissimilar communities. Views of the subject are 
collected by the Semantic Analyzer. These are stored in the UM for use by the CM which generates similar 
and dissimilar communities which is then used by the SR to provide recommendations. 

The API consists of a single call which attempts to do as much as possible for the developer in providing 
recommendations of user generated content. Communities can either be explicit or implicit 

The idea is to give the script designer the possibility to find people who have a common background but have 
either a different or same opinion or alternatively people who think alike but have a different or same opinion 

A typical scenario is that a recommendation of user generated content (opinion, curation and so on) is 
requested. User generated content is chosen based on the analysis of the Semantic Analyser (similar or 
dissimilar). It is then filtered by content belonging to users of certain communities. 

A prototype demo is incorporated in the Hecht studentmgr demo. 

For more detailed information See D3.8. 

6.2 Metadata 
 

id SR-API 

name Social Recommender API 

description Provide similar/dissimilar recommendations bases on 
similar/dissimilar communities 

type API 

release-date 1-5-2023 

release-number 1.0 

work-package WP3 

pilot Hecht studentmgr 

keywords Social Recommender, De-polarization 

licence Apache 

demo Hecht studentmgr 

credits Alan J. Wecker (ajwecker@gmail.com) Tsvika Kuflik 
(tsvikak@is.haifa.ac.il)  

bibliography See D3.8 

6.3 Guide for developers 
 

The API is called using a standard Spring Boot REST API call. 

Given several parameters, it returns a list of User Generated Content items (UGCs). 

mailto:ajwecker@gmail.com
mailto:tsvikak@is.haifa.ac.il


 
 
SPICE GA 870811  D6.8 APIs Specifications – v1.0 – 28/04/2023 
 
 

 
44 

 

Recommendation-controller 

GET /api/v2/srec/{userid}/{subject}/{configNum}/{criterionInput} 

Get recommendation for user 

 

Parameters 

Name Description 

userid * 

string 

(path) 

Anonymous id 

subject * 

string 

(path) 

Topic of interest or artwork 

configNum * 

string 

(path) 

1 – similar criterion similar community 

2 – dissimilar criterion similar community 

3 – similar criterion dissimilar community 

4 – dissimilar criterion dissimilar community 

 

criterionInput * 

string 

(path) 

sentiment or emotion 

 

Responses 

Code Description 

http://localhost:8080/swagger-ui/index.html#/recommendation-controller/getAll


 
 
SPICE GA 870811  D6.8 APIs Specifications – v1.0 – 28/04/2023 
 
 

 
45 

200 OK 

Media type 

*/* 

Controls Accept header. 

• Example Value 

• Schema (Recommendation) 

{ 
  "entrancement": "string", 
  "explanation": "string", 
  "ugcs": [ 
    { 
      "source": "string", 
      "context": "string", 
      "createdAt": "string", 
      "updatedAt": "string", 
      "_id": "string", 
      "_docType": "string", //SPICEUMUGC 
      "userid": "string", 
      "parentname": "string", 
      "parenttype": "string", 
      "contentType": "string", 
      "ugcname": "string", 
      "ugcimage": "string", 
      "ugctags": "string", 
      "ugcdesc": "string", 
      "ugcmeta": [  /raw results from SSA 
        {} 
      ], 
      "emotions": {},  //result from SSA  
      "sentiments": {}, //result from SSA 
      "entities": {}, //result from SSA 
      "ugcmeta2": "string", //result from values 
      "topic": "string", 
      "ugctext": "string  //Text without markup 

      } 

    ] 

 

6.4 API Schemas 
Recommendation 

entrancement String {personalized enhancement why you might want to view this 
recommendation} 

explanation String  {Why was this recommendation given} 

 

ugcs [...] List of recommended UserGeneratedContent 

  



 
 
SPICE GA 870811  D6.8 APIs Specifications – v1.0 – 28/04/2023 
 
 

 
46 

7 Ontology server, query and reasoning services 
In this Chapter, we describe the Ontology server developed in WP6 in detail. While the previous chapters 
describe software component already described in other deliverables, here we present the ontology server  
as both system specification and running instance. 

As detailed in Deliverable 6.4 the APIs for the ontology architecture relies on the APIs of the a number of 
integrated services. In particular: the ontology server in the SPICE technical infrastructure runs via a virtual 
machine instance, within the HPC4AI cloud infrastructure of the Department of Computer Science of the 
University of Turin (https://hpc4ai.unito.it/), and managed through the OpenStack console 
(https://www.openstack.org/). 

The server has a total volume storage of 500GB, a RAM of 256GB, an availability of 8VCPUs (currently the 
SPICE virtual machine uses 4 VCPUs) and is equipped with the Ubuntu 18.04 operating system. It has an 
external IP address reachable by other services via HTTP. The SPICE Server hosts and integrates the following 
software components:  

 

• OWL-API 5 (http://owlcs.github.io/owlapi/), a Java API and reference implementation for creating, 
manipulating, serialising OWL Ontologies and using OWL Reasoners;  

• HERMIT (http://www.hermit-reasoner.com/), a standard ontology-based reasoner used to infer 
taxonomical and hidden relationships between elements from a knowledge base. The reasoner is 
called externally via the OWL-API;  

• ONT-API 2.0.0 (https://github.com/owlcs/ont-api), a java library for converting the OWL and OWL 2 
ontologies (with the materialized inferences obtained through reasoning) in RDF-like graph models 
stored as triples;  

• JENA (https://jena.apache.org/index.html ), an Apache framework for storing, manipulating and 
accessing RDF graphs. 

• Fuseki 2 (https://jena.apache.org/documentation/fuseki2/index.html) a SPARQL server of the 
Apache family used to expose the Jena models (containing the inferred triples) to other services both 
via a public interface (available at this address: http://130.192.212.225/fuseki/) and via SOH (SPARQL 
Over HTTP): a set of server-independent command-line scripts for working with SPARQL 1.1 offering 
HTTP access to external services. Fuseki 2 is hosted in a Tomcat Server to be exposed and reachable 
on the Web. The overall architecture is illustrated in the Figure 7.0.1 below. 

 

 

Figure 7.0.1. Overview of the components of the Ontology Server and Reasoning Architecture 

https://hpc4ai.unito.it/
https://www.openstack.org/
http://owlcs.github.io/owlapi/
http://www.hermit-reasoner.com/
https://github.com/owlcs/ont-api
https://jena.apache.org/index.html
https://jena.apache.org/documentation/fuseki2/index.html
http://130.192.212.225/fuseki/


 
 
SPICE GA 870811  D6.8 APIs Specifications – v1.0 – 28/04/2023 
 
 

 
47 

 

This architecture implements the following workflow:  

1. An OWL/OWL 2 ontology (or a network of ontologies) is uploaded to the Ontology Server via OWL-
API1. 

2. All the triples that can be deduced by the loaded ontology, which form the so called “inferred 
ontology” are then derived by using a standard OWL reasoner (e.g., Hermit)2.  

3. The inferred ontology is then transformed to graph model (which is the format suitable for enabling 
querying via SPARQL). This is done by relying on the ONT-API framework, which transforms the 
inferred model into graph model compatible with Jena and Fuseki frameworks.   

4. The model is automatically loaded in the Fuseki 2 SPARQL server available for querying at   
http://130.192.212.225/fuseki/  

 

We will detail below, step by step, how the different components are integrated by using a running example 
about a toy knowledge base (called “arte”) loaded, reasoned and exposed in a SPARQL endpoint as a turtle 
file (.ttl extension). The example will be discussed by providing the different pieces of code necessary to 
activate the different components (the overall code provided in the example is available in the final 
appendix). 

 

7.1 Ontology Uploading and Reasoning calls via OWL-API (Steps 1-2) 
An ontology, or a network of ontologies, can be uploaded to our ontology server via OWL-API as a file, or by 
using an external IRI pointing to an OWL ontology. Since the uploading procedure via file can only be done 
by the managers of the infrastructure (i.e., UNITO members) we have opted for the upload via an external 
IRI, that is reachable and directly usable by any user of the project. The IRI from which it is possible to upload 
the ontologies is: http://130.192.212.225/fuseki (the public address of the Fuseki 2 repository).  

In the code shown below in Figure 7.1.1, we show how an ontology stored at the IRI 
http://130.192.212.225/fuseki/arte (where “arte” is the name of the newly created dataset in Fuseki 2 
storing the “arte.ttl” ontology) is loaded via OWL-API and how an ontological reasoner (e.g., HERMIT) is 
initialized by indicating the types of inferences we are interested in (e.g., CLASS_HIERARCHY, 
CLASS_ASSERTIONS, DIFFERENT_INDIVIDUALS etc.).  

 

 

http://130.192.212.225/fuseki/
http://130.192.212.225/fuseki
http://130.192.212.225/fuseki/arte


 
 
SPICE GA 870811  D6.8 APIs Specifications – v1.0 – 28/04/2023 
 
 

 
48 

Figure 7.1.1. Code excerpt for ontology uploading via external IRI and initialization of the reasoning 
procedures 

 

7.2 Ontology Export as JENA Triple-based graph model (step 3)  
In order to expose the reasoned ontologies in a format that is also accessible via SPARQL queries, it is 
necessary to translate the OWL / OWL 2 ontology/ontologies in a JENA graph model. This service is provided 
by the ONT-API library. In order to activate this translation, the following instruction (to be intended as a 
continuation of the code illustrated in Figure 7.1.1) is provided:  

Model model = ((Ontology(o).asGraphModel(); 

 

It allows to generate and store the JENA Graph Model as a JAVA object. It is worth noticing that the Model 
could also eventually be written into a file by providing this additional instruction: 

model.write(FileOutputStream(new File(ReasonedArte.ttl)), “ttl”). 

 

This possibility, however, is not currently used because it does not allow to automatically upload the JENA 
model to the external SPARQL server (that is, on the other hand, what we aim to do).  

 

7.3 External Exposure of the Graph Model in a SPARQL Server (step 4) 
We upload the extracted JENA model to a Fuseki 2 SPARQL server. In Fuseki 2 it is possible to expose the 
JENA models as different datasets in two different ways: in a manual way and in an automatic fashion.  

 

The manual upload can be done by using the SOH function (SPARQL over HTTP functions)3 provided by Fuseki 
2 or by manually uploading the file on the Fuseki 2 SPARQL graphical interface. SOH provides a set of Ruby 
scripts runnable from command line (therefore it is necessary to install Ruby in order to run them).   

In our example, for what concern the use of the “UPLOAD” SOH command it is sufficient to provide the 
following PUT script to upload the file “ReasonedArte.ttl”: 

 

s-put http://130.192.212.225/fuseki/arte default ReasonedArte.ttl 

 

Alternatively, the file can be simply uploaded via the SPARQL graphical interface (see Figure 7.3.1), reachable 
at http://130.192.212.225/fuseki/arte  

 

Figure 7.3.1. SPARQL endpoint interface for the upload 

 

http://130.192.212.225/fuseki/arte


 
 
SPICE GA 870811  D6.8 APIs Specifications – v1.0 – 28/04/2023 
 
 

 
49 

As mentioned above, however, we decided to opt for a completely automatic upload of the JENA model 
Graph Model (containing the inferred ontology) in Fuseki 2 (at the scope of making it available such model 
via a reachable SPARQL endpoint).  

In order to do that, we used the RDF Connection component of JENA API3. This process is obtained by the 
following instruction (in bold the new instructions with respect to the previous ones):  

 

 

Figure 7.3.2. Automated export of the JENA Graph Model in the Fuseki 2 SPARQL Server via JENA API 

 

This overall workflow allowed us to completely automate the connections between the ontology server and 
the SPARQL one. As already mentioned, we opted for an upload of the ontology via OWL-API through an 
external IRI. The external IRI provided to OWL-API resolves to the Fuseki repository reachable (in our 
example) at the address http://130.192.212.225/fuseki/arte. Once the ontology is loaded in OWL-API, it goes 
through the whole processes of reasoning, translation to JENA model, and automatic update of the Fuseki 2 
repository without any manual intervention.  

 

In the following we describe how to query and update (including inserts, deletes, updates) the Fuseki 2 
exposed model by means of the services: SOH and RDF Connection. Query and update are also available 
through the graphical interface. 

 

7.4 How to QUERY and UPDATE the exposed Fuseki 2 Model with SOH 
In order to query the exposed Fuseki 2 Model via SOH, it is sufficient to use the scripting instructions provided 
here: https://jena.apache.org/documentation/fuseki2/soh.html.  

For example: a simple query could be run via command line in the following way (see Figure 3.4.1 below).  

 

./s-query —service=http://130.192.212.225/fuseki/arte 'SELECT ?s ?p ?o W 

HERE { ?s ?p ?o . }’ 

 

3 https://jena.apache.org/documentation/rdfconnection/  

http://130.192.212.225/fuseki/arte
https://jena.apache.org/documentation/fuseki2/soh.html
https://jena.apache.org/documentation/rdfconnection/


 
 
SPICE GA 870811  D6.8 APIs Specifications – v1.0 – 28/04/2023 
 
 

 
50 

 

Figure 7.4.1. Query of the FUSEKI 2 server via terminal with the SOH scripts. 

 

By using SOH it is also possible to upload/modify the Fuseki 2 model via command line. For example, it is 
possible to include additional information in our toy model about the artistic domain in the following way: 

 

 

Figure 7.4.2. This simple instruction allows adding that “La Vita” (La Vie) is a painting by Picasso. 

 

7.5 How to QUERY and UPDATE the exposed Fuseki 2 Model with RDF Connection 
In order to use RDF Connection for both SPARQL query and Model Updates, we need to first establish a 
connection between the Fuseki 2 Server and the corresponding Model that we want to query/update. With 
the RDFConnection interface, SPARQL operations can be performed on Fuseki remote datasets. 

In order to activate an RDF Connection, it is necessary to include the instruction mentioned above and used 
for the automatic upload of the JENA graph-model in Fuseki 2. The remote connection to the “arte” dataset 
is provided as follows:  



 
 
SPICE GA 870811  D6.8 APIs Specifications – v1.0 – 28/04/2023 
 
 

 
51 

 

RDFConnectionRemoteBuilder builder = RDFConnectionFuseki.create() 

.destination("http://130.192.212.225/fuseki/arte"); 

 

Once the connection is established, it is possible to use RDF connection to provide SPARQL Queries and Model 
Updates on the Fuseki 2 Model. 

For example: a query about the paintings of Picasso contained in the “arte” knowledge base can be executed 
programmatically in this way: 

 

 

Figure 7.5.1. SPARQL query execution on Fuseki 2 from an external application via RDF Connection 

 

Similarly, the knowledge base can be updated by adding new information in this simple way: 

 

 

Figure 7.5.2. Knowledge update on Fuseki 2 from an external application via RDF Connection 

 

Some insertions or deletions could be not compliant with the dictate of the ontological models. In case some 
inconsistent information is added, the OWL-API component (that loads the ontology from the IRI we are 
manipulating) can detect, using the launched reasoner, that the included information is inconsistent and 
should be modified or deleted.  



 
 
SPICE GA 870811  D6.8 APIs Specifications – v1.0 – 28/04/2023 
 
 

 
52 

 

7.6 An overview of the API and workflow architecture for DEGARI GAMStories 
 

 

Figure 7.6.2 is an example of a story entitled "The course of nature" created by the GAMGame user and the 
associated Plutchik’s wheel for the extracted emotions. The Figure 7.6.3 shows an example of RDF-SPARQL 
query on Fuseki server. Given a story-ID, this query select the sets of the stories which have the opposite 
emotions with the current story. In particular, in this example, it is possible to see that Figure 2.5 shows an 
example of RDF-SPARQL query for retrieving stories which have same emotions with the current one. In the 
Table 7.6.1 is reported an example of a story. In particular, user with id="6rK3p7za" creates a story entitled 
"Sad sea", selecting three different artworks 39138,35362, 35249. Figure 2.6 shows the Plutchik’s wheel 
extracted from the story "Sad sea". The emotional wheel was calculated by averaging the i−emotions 
extracted from the union of each artworks that characterise the whole story. 
 
 

 

Table 7.6.1. Story example 
 
 

 
 

Figure 7.6.2. Example of user story with Plutchik’s wheel 

 



 
 
SPICE GA 870811  D6.8 APIs Specifications – v1.0 – 28/04/2023 
 
 

 
53 

  

Figure 7.6.3.Example of RDF-SPARQL API query on Fuseki server for retrieving stories with opposite emotions 

 

 
 
 

7.7 The workflow architecture for DEGARI GAMStories 
As we will show in the previous sections, this advancement allowed us to call the DEGARI 2.0 reasoning 

services to integrate its output within GAMGame, developed to collect stories and user data on cultural 
items, during a museum visit. Finally, by using Visir, curators in the museum are available to create and 
visualise different perspectives in order to evaluate different communities formed based on citizens’ 
selections and emotional responses. The pipeline of the GAMGame, DEGARI 2.0 and Visir services is sketched 
in Figure 7.7.1 and relies on the following workflow: 

(1)  Users by using GAMGame web app can create a story and send a JSON file (in JSON-LD format) by using 
POST method. This JSON file contains the description of a particular story and annotations collected by 
the users over the artefact (e.g. tags about the emotions generated, emojis etc.). All these annotations 
will be used as a description of the cultural item under consideration in the following steps 

(2) The JSON-LD file with the ID of the story and its description/items and comments is stored into the Linked 
data Hub (LDH) and into knowledge graph (KG) stored on Fuseki server 

(3)  The algorithms running on the DEGARI server periodically download the data both from the LDH and 
Fuseki Server (phase 3 and 5 in the Figure 6). They execute the annotations process both with DEGARI, 
eMFD (extended Moral Foundation Dictionary) and the available eMFD API and ICONCLASS API for the 
annotation process of materials, technique, colour and objects that characterise artworks 

(4) DEGARI server executes the reclassification of the JSON-LD artefact and sent back to the LDH data 
containing the enriched stories (emotions + values + ICONCLASS) 

(5) DEGARI algorithms running on server, communicates with a Fuseki server hosting the Plutchik’s ontology 
by automatically updating the knowledge base with the RDF-triples associating to each item a specific 
emotion. The update is done by using the RDF connection SPARQL Update method provided by the 
SPARQL APIs. Finally, DEGARI algorithms downloads the new update KG and start reasoning in local by 
using Hermit reasoning algorithm in order to get the inferences on KG and update the new version of KG 
(now reasoned) on Fuski server. 



 
 
SPICE GA 870811  D6.8 APIs Specifications – v1.0 – 28/04/2023 
 
 

 
54 

(6) DEGARI server sends all JSON-LD data (in the form of User and Community models) to User Model server, 
able to store citizen’s data with the enriched contribution of previously created stories (UM-data). 

(7)  User Model server (UM-server) send UM-data to the Community Model server (CM-server) that is able 
to clusterize citizens ad discovery implicit communities by using perspectives, clustering algorithms (with 
a particular similarity function) and finally shows all the results in a explicable way. 

(8-9)  The CM-server sends clustered data to Visir. Visir can support the Interpretation-Reflection-Loop (IRL) 
by executing the perspective visualisation, communities and users’sintrospection, inter-intra community 
visualisation and perspective configuration. All these steps are driven by the domain expert (museum’s 
curators, phase 9 in Figure 6). 

(10) Finally, in the last step, by using the GAMGame, it is possible to perform the task of story 
recommendation, executing RDF-SPARQL queries directly on the KG stored on Fuseki server. 
 

 

Figure 7.7.1. DEGARI 2.0 API workflow architecture for GAM stories Recommendation 

7.8 Insert and update Fuseki with GAM stories       
In order to use RDF Connection for both SPARQL query and Model Updates we need to first establish a 
connection between the Fuseki 2 Server and the corresponding Model that we want to query/update. In 
particular, via RDFConnection interface, SPARQL operations can be performed on Fuseki remote datasets. 
   

 

Once this connection is established it is possible to use RDF connection to provide SPARQL Query, in order to 
update and adding new information about the triple <storyId, storyTitle, idArtefact>. The RDF-SPARQL query 
is automatically called both from GAMGame (phase 10 in Figure 7.7.1) and DEGARI 2.0 (phase 5 in Figure 
7.7.1). An example is shown in Figure 7.7.2. 

 
 



 
 
SPICE GA 870811  D6.8 APIs Specifications – v1.0 – 28/04/2023 
 
 

 
55 

 

Figure 7.7.2. RDF-SPARQL query for adding <storyId, storyTitle, idArtefact> 

 

Similarly, the KG can be updated by adding new information about story (storyId) and new extracted emotion 
(emotion) from a particular artefact (artefactId). This simple way described in Figure 7.7.3. 

 

Figure 7.7.3. RDF-SPARQL query for adding <storyId, idArtefact, emotion> 

 

  



 
 
SPICE GA 870811  D6.8 APIs Specifications – v1.0 – 28/04/2023 
 
 

 
56 

7.9 Dataset stored in the Linked Data Hub (LDH) 
 

Both GAMGame and DEGARI 2.0 store and download data in JSON-LD format, to and from the Linked Data 
Hub (LDH).  Below is the list with the datasets used by DEGARI 2.0 (only regarding the GAMGame) to 
implement the entire pipeline implemented in Figure 7.7.1. 

This dataset contains all stories created by users using GAMGame web application 

• URL:   https://spice.kmi.open.ac.uk/dataset/stream/details/58 

• UUID:  816c8fb3-6c73-4405-bf71-b1c765c4a79e 

• Name: Gam_Game_Story_Definitions 

This dataset contains the set of 463 artworks of GAM Museum, used by the GAMGame web application. For 
a small subset of artworks, there are 3 links to YouTube videos, containing the presentation of the artwork 
in LIS (Italian Sign Language), ITA and ENG.  

• URL: https://spice.kmi.open.ac.uk/dataset/details/62# 

• UUID: 745d08a3-8f25-4c1a-a34c-e828b7e376d6 

• Name: GAM_dataset 

This dataset contains the set of artworks of GAM Museum, annotated with ICONCLASS, information on 
artists' art movements, emotions extracted from DEGARI, materials, etc. (phase 4 in Figure 7.7.1) 

• URL:    https://spice.kmi.open.ac.uk/dataset/json/details/139 

• UUID:  2a2a5c9a-a8ce-4977-ba09-f4134c95d744 

• Name: GAM_Catalogue_plus 

This dataset contains collected information on GAMGame registered users (phase 1 in Figure 7.7.1) 

• URL:    https://spice.kmi.open.ac.uk/dataset/details/122 

• UUID:  495778c1-2509-4a9c-be15-fb0b2e9afc08 

• Name: GAMGame - information on registered users 

7.10 Graphical Interface 
The same query and update/delete commands described in the SOH and the RDF Connection can be run 
directly on the graphical interface of the Fuseki 2 SPARQL endpoint: http://130.192.212.225/fuseki (by 
selecting the repository “arte”).  

For example, it is possible to update the Fuseki Model (e.g., by adding an additional painting by Picasso called 
“Example”), as exemplified in Figure 7.6.1 below. 

 

https://spice.kmi.open.ac.uk/dataset/stream/details/58
https://spice.kmi.open.ac.uk/dataset/details/62
https://spice.kmi.open.ac.uk/dataset/json/details/139
https://spice.kmi.open.ac.uk/dataset/details/122
http://130.192.212.225/fuseki


 
 
SPICE GA 870811  D6.8 APIs Specifications – v1.0 – 28/04/2023 
 
 

 
57 

 

Figure 7.6.1. Model update in Fuseki 2 via the graphical interface 

 

  



 
 
SPICE GA 870811  D6.8 APIs Specifications – v1.0 – 28/04/2023 
 
 

 
58 

7.11 Source code 
Here we show an excerpt of the code illustrated in the running example, available at 
https://github.com/spice-h2020/SPICE-OntoServer. 

 

//Ontology loading (OWL-API and ONT-API): 

OWLOntologyManager man = OntManagers.createONT(); 

IRI arteIRI = IRI.create("http://130.192.212.225/fuseki/arte"); 

OWLOntology o = man.loadOntology(arteIRI); 

 

//Reasoning calls (Hermit): 

OWLReasonerFactory rf = new ReasonerFactory(); 

OWLReasoner r = rf.createReasoner(o); 

r.precomputeInferences(InferenceType.CLASS_HIERARCHY); 

r.precomputeInferences(InferenceType.CLASS_ASSERTIONS); 

r.precomputeInferences(InferenceType.DISJOINT_CLASSES); 

r.precomputeInferences(InferenceType.DIFFERENT_INDIVIDUALS); 

r.precomputeInferences(InferenceType.OBJECT_PROPERTY_ASSERTIONS); 

 

//Translation into Jena Model (Apache Jena and ONT-API): 

Model model = ((Ontology)o).asGraphModel(); 

 

//SPARQL Graph Store Protocol "PUT" on remote Fuseki server (Jena RDF Connection) 

RDFConnectionRemoteBuilder builder = RDFConnectionFuseki.create() 

    .destination("http://130.192.212.225/fuseki/arte"); 

try ( RDFConnectionFuseki conn = (RDFConnectionFuseki)builder.build() ) { 

    conn.put(model); 

} 

 

//Example of SPARQL Query on remote Fuseki server (Jena RDF Connection) 

RDFConnectionRemoteBuilder builder = RDFConnectionFuseki.create() 

    .destination("http://130.192.212.225/fuseki/arte"); 

Query query = QueryFactory.create( 

      "PREFIX arte: <http://www.modsem.org/arte#> " +  

      "SELECT  ?opera " +  

      "WHERE { arte:PabloPicasso arte:creatoreDi ?opera .}"); 

try ( RDFConnectionFuseki conn = (RDFConnectionFuseki)builder.build() ) { 

    conn.queryResultSet(query, ResultSetFormatter::out); 

} 

 

//Example of SPARQL Update on remote Fuseki server (Jena RDF Connection) 

RDFConnectionRemoteBuilder builder = RDFConnectionFuseki.create() 

    .destination("http://130.192.212.225/fuseki/arte"); 

try ( RDFConnectionFuseki conn = (RDFConnectionFuseki)builder.build() ) { 

conn.update( 

         "PREFIX : <http://www.modsem.org/arte#> " +  

         "PREFIX owl: <http://www.w3.org/2002/07/owl#> " +  

         "PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> " +  

         "PREFIX xsd: <http://www.w3.org/2001/XMLSchema#> " +  

         "INSERT DATA {" +  

         "  :LaVita rdf:type owl:NamedIndividual , " +  

         "                   :Dipinto ; " +  

         "          :haTitolo \"La Vita\"^^xsd:string . " +  

         "    :PabloPicasso :creatoreDi :LaVita .\n" +  

         "}"); 

    conn.queryResultSet(query, ResultSetFormatter::out); 

} 

  

https://github.com/spice-h2020/SPICE-OntoServer


 
 
SPICE GA 870811  D6.8 APIs Specifications – v1.0 – 28/04/2023 
 
 

 
59 

 

8 Conclusions 
This document presented and described the final versions of APIs that have been developed for use within 
the SPICE project architecture. For each API we have detailed the specifications along with its intended 
purpose in relation to SPICE work packages and any relevant design methodology employed. 

Whilst the report inevitably includes a large overlap with deliverable D6.4, which described the SPICE project 
APIs in their interim state, this final version includes the development work that was carried out in M25-M36 
of the project. 

The report includes a user guide for each API, describing how pilot application developers can make use of 
the API’s functions and how to make use of and customise API parameters where appropriate. Example API 
requests and code snippets are also supplied. Links are also made available, where appropriate, for 
downloadable release versions of the various software packages developed within this work package. 


	Project information
	Project contacts
	SPICE consortium

	Executive summary
	Document History
	1 Introduction
	2 SPICE Linked Data Hub API
	2.1 Description of the system
	2.2 Current applications and pilots
	2.3 Metadata
	2.4 Guide for developers
	2.4.1 User operations
	2.4.2 Management operations

	2.5 OpenAPI Specification

	3 User Model API
	3.1 Description of the system
	3.2 Metadata
	3.3 Guide for developers
	Request body:
	Returns:
	GET/api/v2/users2 - Get all users, sorted by name
	Parameters:
	Request Body:
	Returns:

	DELETE/api/v2/users2Delete/{userid} - Remove a user by userid
	Parameters:
	Parameters:
	Request Body:

	POST /api/v2/uhistoryCreate/{userid} - Add a new uhistory for a user
	GET /api/v2/uhistoryGetAllByUserid/{userid} - Get all properties for a specific user
	GET /api/v2/uhistoryGetAllByPname/{pname} - Get all properties with a certain uhistory name
	GET /api/v2/uhistoryGet/{userid}/{pname} - Get a uhistory for a user with a specific name
	DELETE /api/v2/uhistoryDelete/{userid}/{pname} - Delete a specific uhistory for a specific user
	GET /api/v2/ugcGetByUseridAndName/{userid}/{ugcname} - Get UGC for a specific user

	3.4 Schemas

	4 Community Model API
	4.1 Description of the system
	4.2 Metadata
	4.3 Guide for developers
	4.3.1 Community operations
	4.3.2 User operations
	4.3.3 Similarity operations
	4.3.4 Perspective operations
	4.3.5 VISIR operations
	4.3.6 Development operations

	4.4  OpenAPI Specification

	5 SPICE Semantic Annotator API
	5.1 Description of the system
	5.2 Metadata
	5.3 Guide for developers

	6 Social Recommender API
	6.1 Description of the system
	6.2 Metadata
	6.3 Guide for developers
	Responses

	6.4 API Schemas

	7 Ontology server, query and reasoning services
	7.1 Ontology Uploading and Reasoning calls via OWL-API (Steps 1-2)
	7.2 Ontology Export as JENA Triple-based graph model (step 3)
	7.3 External Exposure of the Graph Model in a SPARQL Server (step 4)
	7.4 How to QUERY and UPDATE the exposed Fuseki 2 Model with SOH
	7.5 How to QUERY and UPDATE the exposed Fuseki 2 Model with RDF Connection
	7.6 An overview of the API and workflow architecture for DEGARI GAMStories
	7.7 The workflow architecture for DEGARI GAMStories
	7.8 Insert and update Fuseki with GAM stories
	7.9 Dataset stored in the Linked Data Hub (LDH)
	7.10 Graphical Interface
	7.11 Source code

	8 Conclusions

